scholarly journals Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs

1992 ◽  
Vol 20 (13) ◽  
pp. 3375-3381 ◽  
Author(s):  
Robbert G. van der Most ◽  
Leo Heijnen ◽  
Willy J.M. Spaan ◽  
Raoul J. de Groot
2005 ◽  
Vol 52 (4) ◽  
pp. 833-844 ◽  
Author(s):  
Magdalena Alejska ◽  
Nelli Malinowska ◽  
Anna Urbanowicz ◽  
Marek Figlerowicz

Non-homologous RNA recombination is a process enabling the exchange of genetic material between various (related or unrelated) RNA-based viruses. Despite extensive investigations its molecular mechanism remains unclear. Studies on genetic recombination in brome mosaic virus (BMV) have shown that local hybridization between genomic RNAs induces frequent non-homologous crossovers. A detailed analysis of recombinant structures suggested that local complementary regions might be involved in two types of non-homologous recombination in BMV: site-specific and heteroduplex-mediated. To verify the above hypothesis and better recognize the mechanism of the phenomenon studied we have tested how the putative types of recombination are affected by a specific mutation in the BMV polymerase gene or by changes in RNA structure. The experiments undertaken revealed substantial differences between site-specific and heteroduplex-mediated recombination, indicating that they occur according to different mechanisms. The former can be classified as homology-assisted, and the latter as homology-independent. In addition to local RNA/RNA hybridization, short regions of homology are required for site-specific crossovers to occur. They are most efficiently mediated if one homologous sequence is located at the beginning of and the second just before a double-stranded region. At present it is difficult to state what is the mechanism of heteroduplex-mediated recombination. Earlier it was postulated that strong RNA/RNA interaction enforces template switching by the viral replicase. There are, however, several observations questioning this model and indicating that some other factors, which are still unknown, may influence heteroduplex-mediated crossovers.


Author(s):  
Richard D. Powell ◽  
James F. Hainfeld ◽  
Carol M. R. Halsey ◽  
David L. Spector ◽  
Shelley Kaurin ◽  
...  

Two new types of covalently linked, site-specific immunoprobes have been prepared using metal cluster labels, and used to stain components of cells. Combined fluorescein and 1.4 nm “Nanogold” labels were prepared by using the fluorescein-conjugated tris (aryl) phosphine ligand and the amino-substituted ligand in the synthesis of the Nanogold cluster. This cluster label was activated by reaction with a 60-fold excess of (sulfo-Succinimidyl-4-N-maleiniido-cyclohexane-l-carboxylate (sulfo-SMCC) at pH 7.5, separated from excess cross-linking reagent by gel filtration, and mixed in ten-fold excess with Goat Fab’ fragments against mouse IgG (obtained by reduction of F(ab’)2 fragments with 50 mM mercaptoethylamine hydrochloride). Labeled Fab’ fragments were isolated by gel filtration HPLC (Superose-12, Pharmacia). A combined Nanogold and Texas Red label was also prepared, using a Nanogold cluster derivatized with both and its protected analog: the cluster was reacted with an eight-fold excess of Texas Red sulfonyl chloride at pH 9.0, separated from excess Texas Red by gel filtration, then deprotected with HC1 in methanol to yield the amino-substituted label.


2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


1987 ◽  
Vol 48 (C9) ◽  
pp. C9-741-C9-744 ◽  
Author(s):  
W. HABENICHT ◽  
L. A. CHEWTER ◽  
M. SANDER ◽  
K. MÜLLER-DETHLEFS ◽  
E. W. SCHLAG

Sign in / Sign up

Export Citation Format

Share Document