scholarly journals Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis

2002 ◽  
Vol 30 (3) ◽  
pp. 732-739 ◽  
Author(s):  
S. Broomfield
2019 ◽  
Vol 18 (23) ◽  
pp. 2042-2055 ◽  
Author(s):  
Neeraj Kumar ◽  
Heerak Chugh ◽  
Damini Sood ◽  
Snigdha Singh ◽  
Aarushi Singh ◽  
...  

Heme is central to functions of many biologically important enzymes (hemoproteins). It is an assembly of four porphyrin rings joined through methylene bridges with a central Fe (II). Heme is present in all cells, and its synthesis and degradation balance its amount in the cell. The deregulations of heme networks and incorporation in hemoproteins lead to pathogenic state. This article addresses the detailed structure, biosynthesis, degradation, and transportation associated afflictions to heme. The article is followed by its roles in various diseased conditions where it is produced mainly as the cause of increased hemolysis. It manifests the symptoms in diseases as it is a pro-oxidant, pro-inflammatory and pro-hemolytic agent. We have also discussed the genetic defects that tampered with the biosynthesis, degradation, and transportation of heme. In addition, a brief about the largest hemoprotein group of enzymes- Cytochrome P450 (CYP450) has been discussed with its roles in drug metabolism.


2000 ◽  
Vol 1 (6) ◽  
pp. 390-398 ◽  
Author(s):  
Stefano Goldwurm ◽  
Chiara Casati ◽  
Natascia Venturi ◽  
Simona Strada ◽  
Paolo Santambrogio ◽  
...  
Keyword(s):  

Author(s):  
Natalie Frede ◽  
Jessica Rojas-Restrepo ◽  
Andrés Caballero Garcia de Oteyza ◽  
Mary Buchta ◽  
Katrin Hübscher ◽  
...  

AbstractHyper-IgE syndromes and chronic mucocutaneous candidiasis constitute rare primary immunodeficiency syndromes with an overlapping clinical phenotype. In recent years, a growing number of underlying genetic defects have been identified. To characterize the underlying genetic defects in a large international cohort of 275 patients, of whom 211 had been clinically diagnosed with hyper-IgE syndrome and 64 with chronic mucocutaneous candidiasis, targeted panel sequencing was performed, relying on Agilent HaloPlex and Illumina MiSeq technologies. The targeted panel sequencing approach allowed us to identify 87 (32 novel and 55 previously described) mutations in 78 patients, which generated a diagnostic success rate of 28.4%. Specifically, mutations in DOCK8 (26 patients), STAT3 (21), STAT1 (15), CARD9 (6), AIRE (3), IL17RA (2), SPINK5 (3), ZNF341 (2), CARMIL2/RLTPR (1), IL12RB1 (1), and WAS (1) have been detected. The most common clinical findings in this cohort were elevated IgE (81.5%), eczema (71.7%), and eosinophilia (62.9%). Regarding infections, 54.7% of patients had a history of radiologically proven pneumonia, and 28.3% have had other serious infections. History of fungal infection was noted in 53% of cases and skin abscesses in 52.9%. Skeletal or dental abnormalities were observed in 46.2% of patients with a characteristic face being the most commonly reported feature (23.1%), followed by retained primary teeth in 18.9% of patients. Targeted panel sequencing provides a cost-effective first-line genetic screening method which allows for the identification of mutations also in patients with atypical clinical presentations and should be routinely implemented in referral centers.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 678
Author(s):  
Elena Konovalova ◽  
Olga Romanenkova ◽  
Olga Kostyunina ◽  
Elena Gladyr

The article highlighted the problem of meat cattle genetic defects. The aim was the development of DNA tests for some genetic defects diagnostics, the determination of the animal carriers and their frequencies tracking in time. The 1490 DNA samples from the Aberdeen Angus (n = 701), Hereford (n = 385), Simmental (n = 286) and Belgian Blue (n = 118) cattle have been genotyped on the genetic defects by newly created and earlier developed DNA tests based on AS-PCR and PCR-RFLP methods. The Aberdeen Angus cattle genotyping has revealed 2.38 ± 0.31% AMC-cows and 1.67 ± 0.19 % AMC-bulls, 0.65 ± 0.07% DDC-cows and 0.90 ± 0.10% DDC-bulls. The single animals among the Hereford cattle were carriers of MSUD and CWH (on 0.27 ± 0.05%), ICM and HY (on 0.16 ± 0.03%). The Simmental cattle were free from OS. All Belgian Blue livestock were M1- and 0.84%-CMD1-carriers. The different ages Aberdeen Angus cattle genotyping has shown the tendency of the AMC- and DDC frequencies to increase in the later generations. The statistically significant increase of DDC of 1.17% in the cows’ population born in 2019 compared to those born in 2015 allows concluding the further development of the DNA analysis-based measures preventing the manifestation of the genetic anomalies in meat cattle herds is necessary.


Genetics ◽  
1990 ◽  
Vol 124 (4) ◽  
pp. 817-831 ◽  
Author(s):  
R H Schiestl ◽  
S Prakash ◽  
L Prakash

Abstract rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.


Sign in / Sign up

Export Citation Format

Share Document