scholarly journals Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica

2007 ◽  
Vol 36 (Database) ◽  
pp. D1044-D1047 ◽  
Author(s):  
G.-Z. Wu ◽  
Q.-M. Shi ◽  
Y. Niu ◽  
M.-Q. Xing ◽  
H.-W. Xue
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaojing Wang ◽  
Haiying Liang ◽  
Dalong Guo ◽  
Lili Guo ◽  
Xiangguang Duan ◽  
...  

Abstract Tree peony (Paeonia section Moutan DC.) seeds are an excellent source of beneficial natural compounds that promote health, and they contain high levels of alpha-linolenic acid (ALA). In recent years, tree peony has been emerging as an oil crop. Therefore, combined analysis of the transcriptome and proteome of tree peony (P. ostii) seeds at 25, 32, 39, 53, 67, 81, 88, 95, and 109 days after pollination (DAP) was conducted to better understand the transcriptional and translational regulation of seed development and oil biosynthesis. A total of 38,482 unigenes and 2841 proteins were identified. A total of 26,912 differentially expressed genes (DEGs) and 592 differentially expressed proteins (DEPs) were clustered into three groups corresponding to the rapid growth, seed inclusion enrichment and conversion, and late dehydration and mature stages of seed development. Fifteen lipid metabolism pathways were identified at both the transcriptome and proteome levels. Pathway enrichment analysis revealed that a period of rapid fatty acid biosynthesis occurred at 53–88 DAP. Furthermore, 211 genes and 35 proteins associated with the fatty acid metabolism pathway, 63 genes and 11 proteins associated with the biosynthesis of unsaturated fatty acids (UFAs), and 115 genes and 24 proteins associated with ALA metabolism were identified. Phylogenetic analysis revealed that 16 putative fatty acid desaturase (FAD)-encoding genes clustered into four FAD groups, eight of which exhibited the highest expression at 53 DAP, suggesting that they play an important role in ALA accumulation. RT-qPCR analysis indicated that the temporal expression patterns of oil biosynthesis genes were largely similar to the RNA-seq results. The expression patterns of fatty acid metabolism- and seed development-related proteins determined by MRM were also highly consistent with the results obtained in the proteomic analysis. Correlation analysis indicated significant differences in the number and abundance of DEGs and DEPs but a high level of consistency in expression patterns and metabolic pathways. The results of the present study represent the first combined transcriptomic and proteomic analysis of tree peony seeds and provide insight into tree peony seed development and oil accumulation.


1990 ◽  
Vol 29 (01) ◽  
pp. 28-34 ◽  
Author(s):  
F. C. Visser ◽  
M. J. van Eenige ◽  
G. Westera ◽  
J. P. Roos ◽  
C. M. B. Duwel

Changes in myocardial metabolism can be detected externally by registration of time-activity curves after administration of radioiodinated fatty acids. In this scintigraphic study the influence of lactate on fatty acid metabolism was investigated in the normal human myocardium, traced with 123l-17-iodoheptadecanoic acid (123l-17-HDA). In patients (paired, n = 7) lactate loading decreased the uptake of 123l-17-HDA significantly from 27 (control: 22-36) to 20 counts/min/pixel (16-31; p <0.05 Wilcoxon). The half-time value increased to more than 60 rriin (n = 5), oxidation decreased from 61 to 42%. Coronary vasodilatation, a well-known side effect of lactate loading, was studied separately in a dipyridamole study (paired, n = 6). Coronary vasodilatation did not influence the parameters of the time-activity curve. These results suggest that changes in plasma lactate level as occurring, among other effects, during exercise will influence the parameters of dynamic 123l-17-HDA scintigraphy of the heart.


1953 ◽  
Vol 205 (1) ◽  
pp. 81-85
Author(s):  
R.P. Geyer ◽  
Mary F. Meadows ◽  
Linda D. Marshall ◽  
Mary S. Gongaware

Sign in / Sign up

Export Citation Format

Share Document