scholarly journals Order restricted inference for oscillatory systems for detecting rhythmic signals

2016 ◽  
Vol 44 (22) ◽  
pp. e163-e163 ◽  
Author(s):  
Yolanda Larriba ◽  
Cristina Rueda ◽  
Miguel A Fernández ◽  
Shyamal D Peddada

Abstract Motivation Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic. Availability and Implementation A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm. Contact [email protected]

2003 ◽  
Vol 19 (7) ◽  
pp. 834-841 ◽  
Author(s):  
S. D. Peddada ◽  
E. K. Lobenhofer ◽  
L. Li ◽  
C. A. Afshari ◽  
C. R. Weinberg ◽  
...  

2005 ◽  
Vol 21 (20) ◽  
pp. 3933-3934 ◽  
Author(s):  
S. Peddada ◽  
S. Harris ◽  
J. Zajd ◽  
E. Harvey

2018 ◽  
Author(s):  
Thomas D Sherman ◽  
Luciane T Kagohara ◽  
Raymon Cao ◽  
Raymond Cheng ◽  
Matthew Satriano ◽  
...  

AbstractBioinformatics techniques to analyze time course bulk and single cell omics data are advancing. The absence of a known ground truth of the dynamics of molecular changes challenges benchmarking their performance on real data. Realistic simulated time-course datasets are essential to assess the performance of time course bioinformatics algorithms. We develop an R/Bioconductor package, CancerInSilico, to simulate bulk and single cell transcriptional data from a known ground truth obtained from mathematical models of cellular systems. This package contains a general R infrastructure for running cell-based models and simulating gene expression data based on the model states. We show how to use this package to simulate a gene expression data set and consequently benchmark analysis methods on this data set with a known ground truth. The package is freely available via Bioconductor: http://bioconductor.org/packages/CancerInSilico/


Author(s):  
Ruiyin Liu ◽  
Jian Tao ◽  
Dehui Wang

Peddada et al. (Gene selected and clustering for time-course and close-response microarray experiments using order-restricted inference, Bioinformatics 19 (2003): 834–841) proposed a new method for selecting and clustering genes according to their time-course or dose-response profiles. Their method necessitates the assumption of a constant variance through time or among dosages. This homoscedasticity assumption is, however, seldom satisfied in practice. In this paper, via the application of Shi’s algorithms and a modified bootstrap procedure (N. Z. Shi, Maximum likelihood estimation of means and variances from normal populations under simulations order restrictions (J. Multivariate Anal. 50 (1994) 282–293), we proposed a generalized order-restricted inference method which releases the homoscedasticity restriction. Simulation results show that procedures considered in this paper as well as those by Peddada et al. (Gene selected and clustering for time-course and close-response microarray experiments using order-restricted inference, Bioinformatics 19 (2003) 834–841) are generally comparable in terms of Type I error rate while our proposed algorithms are usually more powerful.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Braja Gopal Patra ◽  
 Babak Soltanalizadeh ◽  
 Nan Deng ◽  
 Leqing Wu ◽  
Vahed Maroufy ◽  
...  

Abstract The exponential growth of genomic/genetic data in the era of Big Data demands new solutions for making these data findable, accessible, interoperable and reusable. In this article, we present a web-based platform named Gene Expression Time-Course Research (GETc) Platform that enables the discovery and visualization of time-course gene expression data and analytical results from the NIH/NCBI-sponsored Gene Expression Omnibus (GEO). The analytical results are produced from an analytic pipeline based on the ordinary differential equation model. Furthermore, in order to extract scientific insights from these results and disseminate the scientific findings, close and efficient collaborations between domain-specific experts from biomedical and scientific fields and data scientists is required. Therefore, GETc provides several recommendation functions and tools to facilitate effective collaborations. GETc platform is a very useful tool for researchers from the biomedical genomics community to present and communicate large numbers of analysis results from GEO. It is generalizable and broadly applicable across different biomedical research areas. GETc is a user-friendly and efficient web-based platform freely accessible at http://genestudy.org/


2019 ◽  
Author(s):  
Rumen Manolov

The lack of consensus regarding the most appropriate analytical techniques for single-case experimental designs data requires justifying the choice of any specific analytical option. The current text mentions some of the arguments, provided by methodologists and statisticians, in favor of several analytical techniques. Additionally, a small-scale literature review is performed in order to explore if and how applied researchers justify the analytical choices that they make. The review suggests that certain practices are not sufficiently explained. In order to improve the reporting regarding the data analytical decisions, it is proposed to choose and justify the data analytical approach prior to gathering the data. As a possible justification for data analysis plan, we propose using as a basis the expected the data pattern (specifically, the expectation about an improving baseline trend and about the immediate or progressive nature of the intervention effect). Although there are multiple alternatives for single-case data analysis, the current text focuses on visual analysis and multilevel models and illustrates an application of these analytical options with real data. User-friendly software is also developed.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Arika Fukushima ◽  
Masahiro Sugimoto ◽  
Satoru Hiwa ◽  
Tomoyuki Hiroyasu

Abstract Background Historical and updated information provided by time-course data collected during an entire treatment period proves to be more useful than information provided by single-point data. Accurate predictions made using time-course data on multiple biomarkers that indicate a patient’s response to therapy contribute positively to the decision-making process associated with designing effective treatment programs for various diseases. Therefore, the development of prediction methods incorporating time-course data on multiple markers is necessary. Results We proposed new methods that may be used for prediction and gene selection via time-course gene expression profiles. Our prediction method consolidated multiple probabilities calculated using gene expression profiles collected over a series of time points to predict therapy response. Using two data sets collected from patients with hepatitis C virus (HCV) infection and multiple sclerosis (MS), we performed numerical experiments that predicted response to therapy and evaluated their accuracies. Our methods were more accurate than conventional methods and successfully selected genes, the functions of which were associated with the pathology of HCV infection and MS. Conclusions The proposed method accurately predicted response to therapy using data at multiple time points. It showed higher accuracies at early time points compared to those of conventional methods. Furthermore, this method successfully selected genes that were directly associated with diseases.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Verônica R. de Melo Costa ◽  
Julianus Pfeuffer ◽  
Annita Louloupi ◽  
Ulf A. V. Ørom ◽  
Rosario M. Piro

Abstract Background Introns are generally removed from primary transcripts to form mature RNA molecules in a post-transcriptional process called splicing. An efficient splicing of primary transcripts is an essential step in gene expression and its misregulation is related to numerous human diseases. Thus, to better understand the dynamics of this process and the perturbations that might be caused by aberrant transcript processing it is important to quantify splicing efficiency. Results Here, we introduce SPLICE-q, a fast and user-friendly Python tool for genome-wide SPLICing Efficiency quantification. It supports studies focusing on the implications of splicing efficiency in transcript processing dynamics. SPLICE-q uses aligned reads from strand-specific RNA-seq to quantify splicing efficiency for each intron individually and allows the user to select different levels of restrictiveness concerning the introns’ overlap with other genomic elements such as exons of other genes. We applied SPLICE-q to globally assess the dynamics of intron excision in yeast and human nascent RNA-seq. We also show its application using total RNA-seq from a patient-matched prostate cancer sample. Conclusions Our analyses illustrate that SPLICE-q is suitable to detect a progressive increase of splicing efficiency throughout a time course of nascent RNA-seq and it might be useful when it comes to understanding cancer progression beyond mere gene expression levels. SPLICE-q is available at: https://github.com/vrmelo/SPLICE-q


Sign in / Sign up

Export Citation Format

Share Document