scholarly journals Combining asymmetric 13C-labeling and isotopic filter/edit NOESY: a novel strategy for rapid and logical RNA resonance assignment

2017 ◽  
Vol 45 (16) ◽  
pp. e146-e146 ◽  
Author(s):  
Regan M. LeBlanc ◽  
Andrew P. Longhini ◽  
Stuart F.J. Le Grice ◽  
Bruce A. Johnson ◽  
Theodore K. Dayie
2013 ◽  
Vol 41 (18) ◽  
pp. e172-e172 ◽  
Author(s):  
Thomas Aeschbacher ◽  
Elena Schmidt ◽  
Markus Blatter ◽  
Christophe Maris ◽  
Olivier Duss ◽  
...  

2010 ◽  
Vol 49 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Alexander Lemak ◽  
Aleksandras Gutmanas ◽  
Seth Chitayat ◽  
Murthy Karra ◽  
Christophe Farès ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Philipp Innig Aguion ◽  
Alexander Marchanka

Magic angle spinning (MAS) solid-state NMR (ssNMR) is an established tool that can be applied to non-soluble or non-crystalline biomolecules of any size or complexity. The ssNMR method advances rapidly due to technical improvements and the development of advanced isotope labeling schemes. While ssNMR has shown significant progress in structural studies of proteins, the number of RNA studies remains limited due to ssNMR methodology that is still underdeveloped. Resonance assignment is the most critical and limiting step in the structure determination protocol that defines the feasibility of NMR studies. In this review, we summarize the recent progress in RNA resonance assignment methods and approaches for secondary structure determination by ssNMR. We critically discuss advantages and limitations of conventional 13C- and 15N-detected experiments and novel 1H-detected methods, identify optimal regimes for RNA studies by ssNMR, and provide our view on future ssNMR studies of RNA in large RNP complexes.


2019 ◽  
Vol 3 (1) ◽  
pp. 97-105
Author(s):  
Mary Zuccato ◽  
Dustin Shilling ◽  
David C. Fajgenbaum

Abstract There are ∼7000 rare diseases affecting 30 000 000 individuals in the U.S.A. 95% of these rare diseases do not have a single Food and Drug Administration-approved therapy. Relatively, limited progress has been made to develop new or repurpose existing therapies for these disorders, in part because traditional funding models are not as effective when applied to rare diseases. Due to the suboptimal research infrastructure and treatment options for Castleman disease, the Castleman Disease Collaborative Network (CDCN), founded in 2012, spearheaded a novel strategy for advancing biomedical research, the ‘Collaborative Network Approach’. At its heart, the Collaborative Network Approach leverages and integrates the entire community of stakeholders — patients, physicians and researchers — to identify and prioritize high-impact research questions. It then recruits the most qualified researchers to conduct these studies. In parallel, patients are empowered to fight back by supporting research through fundraising and providing their biospecimens and clinical data. This approach democratizes research, allowing the entire community to identify the most clinically relevant and pressing questions; any idea can be translated into a study rather than limiting research to the ideas proposed by researchers in grant applications. Preliminary results from the CDCN and other organizations that have followed its Collaborative Network Approach suggest that this model is generalizable across rare diseases.


Author(s):  
Taddese Mekonnen Ambay ◽  
Philipp Schick ◽  
Michael Grimm ◽  
Maximilian Sager ◽  
Felix Schneider ◽  
...  

2020 ◽  
Author(s):  
Ana Beloqui ◽  
Francesco Suriano ◽  
Matthias Hul ◽  
Yining Xu ◽  
Véronique Préat ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 58-76 ◽  
Author(s):  
Bohan Rong ◽  
Qiong Wu ◽  
Chao Sun

Melatonin is a well-known molecule for its involvement in circadian rhythm regulation and its contribution to protection against oxidative stress in organisms including unicellular alga, animals and plants. Currently, the bio-regulatory effects of melatonin on the physiology of various peripheral tissues have drawn a great attention of scientists. Although melatonin was previously defined as a neurohormone secreted from pineal gland, recently it has been identified that virtually, every cell has the capacity to synthesize melatonin and the locally generated melatonin has multiple pathophysiological functions, including regulations of obesity and metabolic syndromes. Herein, we focus on the effects of melatonin on fat deposition in various peripheral organs/tissues. The two important regulatory mechanisms related to the topic, i.e., the improvements of circadian rhythms and antioxidative capacity will be thoroughly discussed since they are linked to several biomarkers involved in obesity and energy imbalance, including metabolism and immunity. Furthermore, several other functions of melatonin which may serve to prevent or promote obesity and energy dysmetabolism-induced pathological states are also addressed. The organs of special interest include liver, pancreas, skeletal muscle, adipose tissue and the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document