scholarly journals AT-dinucleotide rich sequences drive fragile site formation

2019 ◽  
Vol 47 (18) ◽  
pp. 9685-9695 ◽  
Author(s):  
Michal Irony-Tur Sinai ◽  
Anita Salamon ◽  
Noemie Stanleigh ◽  
Tchelet Goldberg ◽  
Aryeh Weiss ◽  
...  

Abstract Common fragile sites (CFSs) are genomic regions prone to breakage under replication stress conditions recurrently rearranged in cancer. Many CFSs are enriched with AT-dinucleotide rich sequences (AT-DRSs) which have the potential to form stable secondary structures upon unwinding the double helix during DNA replication. These stable structures can potentially perturb DNA replication progression, leading to genomic instability. Using site-specific targeting system, we show that targeted integration of a 3.4 kb AT-DRS derived from the human CFS FRA16C into a chromosomally stable region within the human genome is able to drive fragile site formation under conditions of replication stress. Analysis of >1300 X chromosomes integrated with the 3.4 kb AT-DRS revealed recurrent gaps and breaks at the integration site. DNA sequences derived from the integrated AT-DRS showed in vitro a significantly increased tendency to fold into branched secondary structures, supporting the predicted mechanism of instability. Our findings clearly indicate that intrinsic DNA features, such as complexed repeated sequence motifs, predispose the human genome to chromosomal instability.

1998 ◽  
Vol 111 (12) ◽  
pp. 1623-1634
Author(s):  
A.H. Palin ◽  
R. Critcher ◽  
D.J. Fitzgerald ◽  
J.N. Anderson ◽  
C.J. Farr

Fragile sites are reproducibly expressed and chemically induced decondensations on mitotic chromosomes observed under cytological conditions. They are classified both on the basis of the frequency with which they occur (rare and common) and in terms of the chemical agent used to induce expression in tissue culture cells. Aphidicolin-sensitive common fragile sites appear to be ubiquitous in humans and other mammals and have been considered as candidates of pathological importance. Recently DNA from FRA3B, the most highly expressed constitutive fragile site in the human genome, has been cloned although as yet the cause of the underlying fragility has not been identified. In this study we describe the isolation, using a direct cloning approach, of DNA from a region of the Chinese hamster genome associated with aphidicolin-inducible fragility. Cells of a human-hamster somatic cell hybrid were transfected with a pSV2HPRT vector while exposed to aphidicolin, an inhibitor of DNA polymerases alpha, delta and epsilon. FISH analysis of stable transfectant clones revealed that the ingoing plasmid DNA had preferentially integrated into fragile site-containing chromosomal bands. Plasmid rescue was used to recover DNA sequences flanking one such integration site in the hamster genome. We demonstrate by FISH analysis of metaphase cells induced with aphidicolin that the rescued DNA is from a region of fragility on Chinese hamster chromosome 2, distal to the DHFR locus. Analysis of the DNA sequences flanking the integration site revealed the overall A+T content of the 3,725 bp region sequenced to be 63.3%, with a highly [A].[T]-rich 156 bp region (86.5%) almost adjacent to the integration site. Computational analyses have identified strong homologies to Saccharomyces cerevisiae autonomous replicating sequences (ARS), polypyrimidine tracts, scaffold attachment site consensus sequences and a 24 bp consensus sequence highly conserved in eukaryotic replication origins, all of which appear to cluster around the [A].[T]-rich sequences. This domain also possesses structural characteristics which are common to both prokaryotic and eukaryotic origins of replications, in particular an unusually straight conformation of low thermal stability flanked either side by highly bent DNA segments. Further isolation and characterisation of DNA sequences from common fragile sites will facilitate studies into the underlying nature of these enigmatic regions of the mammalian genome, leading to a greater understanding of chromatin structure.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 578
Author(s):  
Lindsey Hazeslip ◽  
Maroof Khan Zafar ◽  
Muhammad Zain Chauhan ◽  
Alicia K. Byrd

DNA Helicase B (HELB) is a conserved helicase in higher eukaryotes with roles in the initiation of DNA replication and in the DNA damage and replication stress responses. HELB is a predominately nuclear protein in G1 phase where it is involved in initiation of DNA replication through interactions with DNA topoisomerase 2-binding protein 1 (TOPBP1), cell division control protein 45 (CDC45), and DNA polymerase α-primase. HELB also inhibits homologous recombination by reducing long-range end resection. After phosphorylation by cyclin-dependent kinase 2 (CDK2) at the G1 to S transition, HELB is predominately localized to the cytosol. However, this cytosolic localization in S phase is not exclusive. HELB has been reported to localize to chromatin in response to replication stress and to localize to the common fragile sites 16D (FRA16D) and 3B (FRA3B) and the rare fragile site XA (FRAXA) in S phase. In addition, HELB is phosphorylated in response to ionizing radiation and has been shown to localize to chromatin in response to various types of DNA damage, suggesting it has a role in the DNA damage response.


2018 ◽  
Vol 19 (10) ◽  
pp. 3255 ◽  
Author(s):  
Wei-Chung Tsao ◽  
Kristin Eckert

Incomplete and low-fidelity genome duplication contribute to genomic instability and cancer development. Difficult-to-Replicate Sequences, or DiToRS, are natural impediments in the genome that require specialized DNA polymerases and repair pathways to complete and maintain faithful DNA synthesis. DiToRS include non B-DNA secondary structures formed by repetitive sequences, for example within chromosomal fragile sites and telomeres, which inhibit DNA replication under endogenous stress conditions. Oncogene activation alters DNA replication dynamics and creates oncogenic replication stress, resulting in persistent activation of the DNA damage and replication stress responses, cell cycle arrest, and cell death. The response to oncogenic replication stress is highly complex and must be tightly regulated to prevent mutations and tumorigenesis. In this review, we summarize types of known DiToRS and the experimental evidence supporting replication inhibition, with a focus on the specialized DNA polymerases utilized to cope with these obstacles. In addition, we discuss different causes of oncogenic replication stress and its impact on DiToRS stability. We highlight recent findings regarding the regulation of DNA polymerases during oncogenic replication stress and the implications for cancer development.


1993 ◽  
Vol 13 (10) ◽  
pp. 6064-6070
Author(s):  
Y P Li ◽  
R Tomanin ◽  
J R Smiley ◽  
S Bacchetti

Infection with adenovirus type 12 (Ad12) induces four fragile sites in the human genome (H.F. Stich, G.L. van Hoosier, and J.J. Trentin, Exp. Cell Res. 34:400-403, 1964; H. zur Hausen, J. Virol. 1:1174-1185, 1967). The major site, at 17q21-22, contains the U2 gene cluster, which is specifically disrupted by infection in at least a percentage of the cells (D.M. Durnam, J.C. Menninger, S.H. Chandler, P.P. Smith, and J.K. McDougall, Mol. Cell. Biol. 8:1863-1867, 1988). For direct assessment of whether the U2 locus is the target of the Ad12 effect, an artificial locus, constructed in vitro and consisting of tandem arrays of the U2 6-kbp monomer, was transfected into human cells. We report that integration of this artificial locus on the p arm of chromosome 13 creates a new Ad12-inducible fragile site.


2013 ◽  
Vol 201 (3) ◽  
pp. 395-408 ◽  
Author(s):  
Valérie Bergoglio ◽  
Anne-Sophie Boyer ◽  
Erin Walsh ◽  
Valeria Naim ◽  
Gaëlle Legube ◽  
...  

Human DNA polymerase η (Pol η) is best known for its role in responding to UV irradiation–induced genome damage. We have recently observed that Pol η is also required for the stability of common fragile sites (CFSs), whose rearrangements are considered a driving force of oncogenesis. Here, we explored the molecular mechanisms underlying this newly identified role. We demonstrated that Pol η accumulated at CFSs upon partial replication stress and could efficiently replicate non-B DNA sequences within CFSs. Pol η deficiency led to persistence of checkpoint-blind under-replicated CFS regions in mitosis, detectable as FANCD2-associated chromosomal sites that were transmitted to daughter cells in 53BP1-shielded nuclear bodies. Expression of a catalytically inactive mutant of Pol η increased replication fork stalling and activated the replication checkpoint. These data are consistent with the requirement of Pol η–dependent DNA synthesis during S phase at replication forks stalled in CFS regions to suppress CFS instability by preventing checkpoint-blind under-replicated DNA in mitosis.


1995 ◽  
Vol 15 (11) ◽  
pp. 6256-6261 ◽  
Author(s):  
S Gargano ◽  
P Wang ◽  
E Rusanganwa ◽  
S Bacchetti

Adenovirus type 12 induces four fragile sites upon infection of human cells. The U2 locus, consisting of up to 20 tandem repeats of a 5.8-kbp monomer, maps at the most sensitive of these sites at 17q21-22. We have previously shown that an artificial U2 locus integrated into the human genome generates a new virus-induced fragile site. To determine which elements within the U2 monomer are responsible for fragility, we constructed loci consisting of tandem repeats of subfragments of the U2 monomer. With this approach, we demonstrate that a transcriptionally competent U2 gene is necessary and sufficient for virus-induced fragility and that no other element within the 5.8-kbp monomer contributes to this effect.


1993 ◽  
Vol 13 (10) ◽  
pp. 6064-6070 ◽  
Author(s):  
Y P Li ◽  
R Tomanin ◽  
J R Smiley ◽  
S Bacchetti

Infection with adenovirus type 12 (Ad12) induces four fragile sites in the human genome (H.F. Stich, G.L. van Hoosier, and J.J. Trentin, Exp. Cell Res. 34:400-403, 1964; H. zur Hausen, J. Virol. 1:1174-1185, 1967). The major site, at 17q21-22, contains the U2 gene cluster, which is specifically disrupted by infection in at least a percentage of the cells (D.M. Durnam, J.C. Menninger, S.H. Chandler, P.P. Smith, and J.K. McDougall, Mol. Cell. Biol. 8:1863-1867, 1988). For direct assessment of whether the U2 locus is the target of the Ad12 effect, an artificial locus, constructed in vitro and consisting of tandem arrays of the U2 6-kbp monomer, was transfected into human cells. We report that integration of this artificial locus on the p arm of chromosome 13 creates a new Ad12-inducible fragile site.


2019 ◽  
Author(s):  
Dan Sarni ◽  
Takayo Sasaki ◽  
Karin Miron ◽  
Michal Irony Tur-Sinai ◽  
Juan Carlos Rivera-Mulia ◽  
...  

AbstractCommon fragile sties (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features characterizing CFSs have been associated with their instability, however, these features are prevalent across the genome and do not account for all known CFSs. Therefore, the molecular mechanism underlying CFS instability remains unclear. Here, we explored the transcriptional profile and temporal order of DNA replication (replication timing, RT) of cells under replication stress conditions. We show that the RT of only a small portion of the genome is affected by replication stress, and that CFSs are enriched for delayed RT. We identified a signature for chromosomal fragility, comprised of replication stress-induced delay in RT of early/mid S-phase replicating regions within actively transcribed large genes. This fragility signature enabled precise mapping of the core fragility region. Furthermore, the signature enabled the identification of novel fragile sites that were not detected cytogenetically, highlighting the improved sensitivity of our approach for identifying fragile sites. Altogether, this study reveals a link between altered DNA replication and transcription of large genes underlying the mechanism of CFS expression. Thus, investigating the RT and transcriptional changes in cancer may contribute to the understanding of mechanisms promoting genomic instability in cancer.


2003 ◽  
Vol 23 (20) ◽  
pp. 7143-7151 ◽  
Author(s):  
Eitan Zlotorynski ◽  
Ayelet Rahat ◽  
Jennifer Skaug ◽  
Neta Ben-Porat ◽  
Efrat Ozeri ◽  
...  

ABSTRACT Fragile sites are specific loci that form gaps, constrictions, and breaks on chromosomes exposed to partial replication stress and are rearranged in tumors. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. The molecular basis of rare fragile sites is associated with expanded repeats capable of adopting unusual non-B DNA structures that can perturb DNA replication. The molecular basis of common fragile sites was unknown. Fragile sites from R-bands are enriched in flexible sequences relative to nonfragile regions from the same chromosomal bands. Here we cloned FRA7E, a common fragile site mapped to a G-band, and revealed a significant difference between its flexibility and that of nonfragile regions mapped to G-bands, similar to the pattern found in R-bands. Thus, in the entire genome, flexible sequences might play a role in the mechanism of fragility. The flexible sequences are composed of interrupted runs of AT-dinucleotides, which have the potential to form secondary structures and hence can affect replication. These sequences show similarity to the AT-rich minisatellite repeats that underlie the fragility of the rare fragile sites FRA16B and FRA10B. We further demonstrate that the normal alleles of FRA16B and FRA10B span the same genomic regions as the common fragile sites FRA16C and FRA10E. Our results suggest that a shared molecular basis, conferred by sequences with a potential to form secondary structures that can perturb replication, may underlie the fragility of rare fragile sites harboring AT-rich minisatellite repeats and aphidicolin-induced common fragile sites.


Sign in / Sign up

Export Citation Format

Share Document