PL02.3. A Phenotypic heterogeneity and plasticity as resistance mechanisms in Glioblastoma

2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii1-ii1
Author(s):  
Y Y Yabo ◽  
A Oudin ◽  
A Skupin ◽  
P V Nazarov ◽  
S P Niclou ◽  
...  

Abstract BACKGROUND Glioblastomas are among the most heterogeneous tumors, which hampers patient stratification and development of effective therapies. Glioblastomas create a dynamic ecosystem, where heterogeneous tumor cells interact with the tumor microenvironment to establish different niches. Upon tumor growth, Glioblastoma cells manifest remarkable plasticity and respond flexibly to selective pressures by transiting towards states favorable to the new tumor microenvitonment. How this phenotypic plasticity contributes to treatment resistance is currently less clear. The exact nature of treatment resistant, tolerant and sensitive Glioblastoma cells remains unresolved. Further studies at the single cell level are needed to reveal transient and long-term signatures of the resistant states. MATERIAL AND METHODS To investigate long-term phenotypic changes upon treatment at the single cell level we performed single cell RNA-seq (scRNA-seq) on the longitudinal patient-derived xenograft (PDOX) models derived from Glioblastoma patient tumors prior and after the standard-of-care treatment. In addition, direct treatment of PDOXs with temozolomide combined with scRNA-seq allowed revealing short-term transcriptomic changes both in tumor cells and in the mouse-derived cells forming tumor microenvironment. Advanced computational algorithms, including reference-free deconvolution methods, were applied to reveal treatment resistance signatures and master regulators of the identified treatment-resistant subpopulations. RESULTS We show that PDOX models recapitulate all the major cell types and transcriptional programs reported in Glioblastoma patient samples, providing clinically relevant models for investigating treatment resistance signatures of tumor cells and associated tumor microenvironment. Analysis of treatment naïve and treated Glioblastomas at the single cell level revealed presence of pre-existing treatment resistant states as well as newly established resistant subpopulatons. Certain transcriptomic changes are preserved long term, regardless of the lack of genetic evolution of the tumor cells. CONCLUSION Phenotypic plasticity is an important factor contributing to resistance mechanisms in Glioblastoma. Key molecular regulators of tumor cell plasticity towards treatment resistance states represent novel targets for future combinatory treatments.

2014 ◽  
Vol 9 (4) ◽  
pp. 749-757 ◽  
Author(s):  
Marta Pestrin ◽  
Francesca Salvianti ◽  
Francesca Galardi ◽  
Francesca De Luca ◽  
Natalie Turner ◽  
...  

2011 ◽  
Vol 57 (7) ◽  
pp. 1032-1041 ◽  
Author(s):  
Thomas Kroneis ◽  
Jochen B Geigl ◽  
Amin El-Heliebi ◽  
Martina Auer ◽  
Peter Ulz ◽  
...  

BACKGROUND Analysis of chromosomal aberrations or single-gene disorders from rare fetal cells circulating in the blood of pregnant women requires verification of the cells' genomic identity. We have developed a method enabling multiple analyses at the single-cell level that combines verification of the genomic identity of microchimeric cells with molecular genetic and cytogenetic diagnosis. METHODS We used a model system of peripheral blood mononuclear cells spiked with a colon adenocarcinoma cell line and immunofluorescence staining for cytokeratin in combination with DNA staining with the nuclear dye TO-PRO-3 in a preliminary study to define candidate microchimeric (tumor) cells in Cytospin preparations. After laser microdissection, we performed low-volume on-chip isothermal whole-genome amplification (iWGA) of single and pooled cells. RESULTS DNA fingerprint analysis of iWGA aliquots permitted successful identification of all analyzed candidate microchimeric cell preparations (6 samples of pooled cells, 7 samples of single cells). Sequencing of 3 single-nucleotide polymorphisms was successful at the single-cell level for 20 of 32 allelic loci. Metaphase comparative genomic hybridization (mCGH) with iWGA products of single cells showed the gains and losses known to be present in the genomic DNA of the target cells. CONCLUSIONS This method may be instrumental in cell-based noninvasive prenatal diagnosis. Furthermore, the possibility to perform mCGH with amplified DNA from single cells offers a perspective for the analysis of nonmicrochimeric rare cells exhibiting genomic alterations, such as circulating tumor cells.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu Tanouchi ◽  
Anand Pai ◽  
Heungwon Park ◽  
Shuqiang Huang ◽  
Nicolas E. Buchler ◽  
...  

2021 ◽  
Author(s):  
Ikuko Takeda Nakamura ◽  
Masachika Ikegami ◽  
Nobuhiko Hasegawa ◽  
Takuo Hayashi ◽  
Toshihide Ueno ◽  
...  

2012 ◽  
Vol 84 (8) ◽  
pp. 1407-1407
Author(s):  
A. Grünberger ◽  
C. Probst ◽  
W. Wiechert ◽  
D. Kohlheyer

Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 390-396 ◽  
Author(s):  
MG Golightly ◽  
DG Fischer ◽  
C Ohlander ◽  
HS Koren

Abstract Highly purified (97%-99%) and viable (99%) peripheral blood monocytes obtained by EDTA-reversible adherence to autologous-serum-precoated plastic surfaces could rapidly lyse a variety of tumor cells in a 3–4 hr 51Cr release assay. Using these monocytes as effectors, a short-term agarose/conjugate assay was utilized, permitting us to examine the interaction between fresh human monocytes and neoplastic target cells on a single cell level. That the tumor-bound effector cells were indeed monocytes was confirmed by employing the monocyte-specific monoclonal antibody 61D3, which stained 95%-99% of the mononuclear cells bound to conjugated and killed K562 tumor targets. The binding of monocytes to target cells appeared to be temperature dependent and was extremely rapid, reaching a plateau after 5 min at 30 degrees C. Our findings demonstrated for the first time that only a proportion of human blood monocytes can bind to a particular target cell and that only a fraction of the binding cells have the intrinsic potential to kill those neoplastic targets. The proportion of monocytes capable of binding and killing varies between individuals and also depends on the tumor cell used, indicating heterogeneity in the monocyte and tumor cell populations. The highest proportion of monocytes bind to the human erythromyeloid leukemia K562 cell line (13%-50%). The frequency of monocytes capable of killing K562 tumor cells is relatively low (7%- 13%). The system described here should be useful to study the heterogeneity of mononuclear phagocytes and to analyze the molecular basis of the interaction between those effector cells and neoplastic target cells.


2020 ◽  
Vol 21 (9) ◽  
pp. 3166
Author(s):  
Kiminori Yanagisawa ◽  
Masayasu Toratani ◽  
Ayumu Asai ◽  
Masamitsu Konno ◽  
Hirohiko Niioka ◽  
...  

It is known that single or isolated tumor cells enter cancer patients’ circulatory systems. These circulating tumor cells (CTCs) are thought to be an effective tool for diagnosing cancer malignancy. However, handling CTC samples and evaluating CTC sequence analysis results are challenging. Recently, the convolutional neural network (CNN) model, a type of deep learning model, has been increasingly adopted for medical image analyses. However, it is controversial whether cell characteristics can be identified at the single-cell level by using machine learning methods. This study intends to verify whether an AI system could classify the sensitivity of anticancer drugs, based on cell morphology during culture. We constructed a CNN based on the VGG16 model that could predict the efficiency of antitumor drugs at the single-cell level. The machine learning revealed that our model could identify the effects of antitumor drugs with ~0.80 accuracies. Our results show that, in the future, realizing precision medicine to identify effective antitumor drugs for individual patients may be possible by extracting CTCs from blood and performing classification by using an AI system.


2019 ◽  
Vol 66 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Shana O Kelley ◽  
Klaus Pantel

Abstract BACKGROUND Liquid biopsy, in which tumor cells and tumor-derived biomolecules are collected from the circulation, is an attractive strategy for the management of cancer that allows the serial monitoring of patients during treatment. The analysis of circulating DNA produced by tumors provides a means to collect genotypic information about the molecular profile of a patient's cancer. Phenotypic information, which may be highly relevant for therapeutic selection, is ideally derived from intact cells, necessitating the analysis of circulating tumor cells (CTCs). CONTENT Recent advances in profiling CTCs at the single-cell level are providing new ways to collect critical phenotypic information. Analysis of secreted proteins, surface proteins, and intracellular RNAs for CTCs at the single-cell level is now possible and provides a means to quantify molecular markers that are involved with the mechanism of action of the newest therapeutics. We review the latest technological advances in this area along with related breakthroughs in high-purity CTC capture and in vivo profiling approaches, and we also present a perspective on how genotypic and phenotypic information collected via liquid biopsies is being used in the clinic. SUMMARY Over the past 5 years, the use of liquid biopsy has been adopted in clinical medicine, representing a major paradigm shift in how molecular testing is used in cancer management. The first tests to be used are genotypic measurements of tumor mutations that affect therapeutic effectiveness. Phenotypic information is also clinically relevant and essential for monitoring proteins and RNA sequences that are involved in therapeutic response.


Sign in / Sign up

Export Citation Format

Share Document