scholarly journals P05.41 The influence of complex cytogenetic aberration patterns on recurrent meningiomas

2018 ◽  
Vol 20 (suppl_3) ◽  
pp. iii312-iii312
Author(s):  
S Hemmer ◽  
S Urbschat ◽  
J Oertel ◽  
R Ketter
2020 ◽  
Vol 23 (6) ◽  
pp. 448-452
Author(s):  
Francesco Pontoriero ◽  
Ayaka M Silverman ◽  
Judy M Pascasio ◽  
Renu Bajaj

Carcinoma originating from the surface epithelium of the nasopharynx is classified by the World Health Organization (WHO) as nasopharyngeal carcinoma (NPC) and has 3 main types: keratinizing squamous cell carcinoma (WHO type 1) and nonkeratinizing carcinoma, differentiated (WHO type II), and undifferentiated (WHO type III). Nonkeratinizing NPC is strongly associated with prior Epstein–Barr virus (EBV) infection. These tumors may be divided into differentiated and undifferentiated carcinoma. Histologically, the tumor is characterized by syncytia of large malignant cells with vesicular nuclei, conspicuous nucleoli, and easily observed mitotic figures. We report a case of a 14-year-old boy diagnosed with EBV and human papillomavirus (HPV)-positive NPC (WHO type 3) with cytogenetics showing the presence of mosaic trisomy 2. This case report brings to light a rare cytogenetic aberration to our knowledge only reported once before in the literature in a xenograft model.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hong Ding ◽  
Juan Xu ◽  
Zhimei Lin ◽  
Jingcao Huang ◽  
Fangfang Wang ◽  
...  

AbstractMultiple myeloma (MM) is a treatable plasma cell cancer with no cure. Clinical evidence shows that the status of minimal residual disease (MRD) after treatment is an independent prognostic factor of MM. MRD indicates the depth of post-therapeutic remission. In this review article, we outlined the major clinical trials that have determined the prognostic value of MRD in MM. We also reviewed different methods that were used for MM MRD assessment. Most important, we reviewed our current understanding of MM MRD biology. MRD studies strongly indicate that MRD is not a uniform declination of whole MM tumor population. Rather, MM MRD exhibits unique signatures of cytogenetic aberration and gene expression profiles, unlike those of MM cells before therapy. Diagnostic high-risk MM and low-risk MM exhibited a diversity of MRD features. Clonal evaluation may occur at the MRD stage in MM. The dynamics from the diagnostic MM to MRD correlate with the disease prognosis. Lastly, on the aspect of omics, we performed data-based analysis to address the biological features underlying the course of diagnostic-to-MRD MM. To summarize, the MRD stage of disease represents a critical step in MM pathogenesis and progression. Demonstration of MM MRD biology should help us to deal with the curative difficulties.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Aida Catic ◽  
Amina Kurtovic-Kozaric ◽  
Ardis Sophian ◽  
Lech Mazur ◽  
Faruk Skenderi ◽  
...  

Abstract Background Metanephric adenoma (MA) is a rare benign renal neoplasm. On occasion, MA can be difficult to differentiate from renal malignancies such as papillary renal cell carcinoma in adults and Wilms̕ tumor in children. Despite recent advancements in tumor genomics, there is limited data available regarding the genetic alterations characteristic of MA. The purpose of this study is to determine the frequency of metanephric adenoma cases exhibiting cytogenetic aberration t (9;15)(p24;q24), and to investigate the association between t (9,15) and BRAF mutation in metanephric adenoma. Methods This study was conducted on 28 archival formalin fixed paraffin-embedded (FFPE) specimens from patients with pathologically confirmed MA. Tissue blocks were selected for BRAF sequencing and fluorescent in situ hybridization (FISH) analysis for chromosomal rearrangement between KANK1 on chromosome 9 (9p24.3) and NTRK3 on chromosome 15 (15q25.3), which was previously characterized and described in two MA cases. Results BRAFV600E mutation was identified in 62% of our cases, 9 (38%) cases were BRAFWT, and 4 cases were uninformative. Of the 20 tumors with FISH results, two (10%) were positive for KANK1-NTRK3 fusion. Both cases were BRAFWT suggesting mutual exclusivity of BRAFV600E and KANK1-NTRK3 fusion, the first such observation in the literature. Conclusions Our data shows that BRAF mutation in MA may not be as frequent as suggested in the literature and KANK-NTRK3 fusions may account for a subset of BRAFWT cases in younger patients. FISH analysis for KANK1-NTRK3 fusion or conventional cytogenetic analysis may be warranted to establish the diagnosis of MA in morphologically and immunohistochemically ambiguous MA cases lacking BRAF mutations.


Plant Science ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Hae-Woon Choi ◽  
Peggy G. Lemaux ◽  
Myeong-je Cho

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 132-132
Author(s):  
Constance Regina Baer ◽  
Frank Dicker ◽  
Wolfgang Kern ◽  
Torsten Haferlach ◽  
Claudia Haferlach

Abstract Introduction: MYD88 (Myeloid Differentiation Primary Response 88) mutations are the most common genetic aberration in Waldenström's macroglobulinemia/lymphoplasmacytic lymphoma (LPL). Since the initial description of MYD88 mutations in LPL, the detection has gained great importance in diagnosing the disease. However, in some patients with other B cell malignancies, including chronic lymphocytic leukemia (CLL), MYD88 mutations are detectable. Aim: We describe the molecular and cytogenetic profile of MYD88 mutated LPL in comparison to CLL, in order to identify aberration patterns potentially useful for diagnostic purposes. Patients and Methods: We analyzed bone marrow samples of 78 LPL patients for MYD88 by highly sensitive allele specific PCR (ASP) for the L265P mutation and by next-generation sequencing (NGS) for MYD88 and CXCR4 (Chemokine (C-X-C Motif) Receptor 4) mutations. For CLL, 784 blood or bone marrow samples were sequenced for MYD88 (by NGS), IGHV, TP53, NOTCH1 and SF3B1 by Sanger or NGS as well as the MYD88 mutated CLL cases for CXCR4. For all samples, cytogenetic and multiparameter flow cytometry data was available. Results: In LPL, 68/78 patients (87%) harbored a MYD88 mutation. In 13 cases with low bone marrow infiltration (median: 3%; range: 1-6%), the MYD88 mutation was detected by ASP only and not by NGS. However, one case was identified by NGS only because of a non-L265P mutation, which cannot be detected by ASP (1/68; 1%). In contrast, in CLL only 17/784 (2%) carried a MYD88 mutation. Interestingly, 5/17 (29%) were non-L265P mutations. Of the MYD88 mutated LPL, 17/68 (25%) carried a genetic lesion in the C-terminal domain of CXCR4. In contrast to MYD88, the mutation spectrum of CXCR4 was much broader including non-sense mutations at amino acid S338 (10/18) but also frame shifts resulting in loss of regulatory serine residues. One patient had two independent CXCR4 mutations (S338* and S341Pfs*25). The mean bone marrow infiltration by flow cytometry was 14% and 9% in the CXCR4 mutated and unmuted subsets, respectively (p=0.17). Besides molecular genetic aberrations, 25% (17/68) of MYD88 mutated LPL cases carried cytogenetic aberration. The most frequent cytogenetic aberration in the MYD88 positive LPL was the deletion of 6q (10/68; 15%). Other recurrent cytogenetic abnormalities were gains of 4q (n=3), 8q (n=2), and 12q (n=4), as well as loss of 11q (n=4), 13q (n=2) and 17p (n=3). In the MYD88 unmutated group, we did neither identify any CXCR4 mutation nor any del(6q), suggesting different genetic driver events in this LPL subcohort. Importantly, in the MYD88 positive CLL cohort, cytogenetic analysis did not reveal any patient with del(6q). Instead, del(13q)(q14) was the most prevalent cytogenetic aberration (12/17; 71%). Neither 11q deletions nor 17p deletions were detected. All MYD88 positive CLL had a mutated IGHV status (MYD88 unmutated CLL: 453/767; 59%; P<0.001). The TP53, NOTCH1 and SF3B1 mutational landscape did not reveal any differences between the MYD88 mutated and unmutated cohort. Finally, CXCR4 mutations were present in none of 15 analyzed MYD88 mutated CLL cases. Conclusion: Besides multiparameter flow cytometry, MYD88 mutations are the most powerful tool in the diagnosis of LPL. MYD88 mutated LPL are characterized by a high frequency of CXCR4 mutations and del(6q), while MYD88 unmutated LPLs are associated with a different pattern of genetic abnormalities. MYD88 mutated CLL is a distinct CLL subset associated with mutated IGHV status, a high frequency of 13q deletions and low frequencies of 11q and 17p deletions. MYD88 mutated CLL differs from MYD88 mutated LPL with respect to the pattern of MYD88 mutations, cytogenetic aberrations and the absence of CXCR4 mutations. Highly sensitive ASP allows the L265P mutation detection even in LPL cases with very low bone marrow infiltration; whereas highly sensitive NGS assay are best applicable for detection of more heterogenic MYD88 mutations in CLL or CXCR mutations in LPL. Thus, an integrated molecular and cytogenetic approach allows the characterization of disease specific genetic patterns and should be analyzed for its clinical impact. Disclosures Baer: MLL Munich Leukemia Laboratory: Employment. Dicker:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


2016 ◽  
Vol 150 (3-4) ◽  
pp. 287-292
Author(s):  
Katsuya Yamamoto ◽  
Yosuke Minami ◽  
Kimikazu Yakushijin ◽  
Yu Mizutani ◽  
Yumiko Inui ◽  
...  

The t(11;20)(p15;q11∼12) translocation is a very rare but recurrent cytogenetic aberration that occurs in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). This translocation was shown to form a fusion gene between NUP98 at 11p15 and TOP1 at 20q12. Here, we describe a new case of de novo AML M2 with t(11;20) which was associated with another balanced translocation. An 81-year-old man was admitted to undergo salvage therapy for relapsed AML. G-banding and spectral karyotyping showed 46,XY,t(2;5)(q33;q31),t(11;20)(p15;q12)[20]. Expression of the NUP98/TOP1 fusion transcript was confirmed: NUP98 exon 13 was in-frame fused with TOP1 exon 8. The reciprocal TOP1/NUP98 fusion transcript was also detected: TOP1 exon 7 was fused with NUP98 exon 14. After achieving hematological complete remission, the karyotype converted to 46,XY,t(2;5)(q33;q31)[19]/46,sl,t(11;20)(p15;q12)[1]. FISH analysis demonstrated that the 5q31 breakpoint of t(2;5) was centromeric to EGR1. In all 10 cases described in the literature, the NUP98 exon 13/TOP1 exon 8 fusion transcript was expressed, indicating that it may be responsible for the pathogenesis of MDS/AML with t(11;20). On the other hand, the TOP1/NUP98 transcript was coexpressed in 4 cases of de novo AML, but not in 3 cases of therapy-related MDS. Thus, this reciprocal fusion may be associated with progression to AML.


Sign in / Sign up

Export Citation Format

Share Document