scholarly journals EXTH-51. GENETICALLY STABLE POLIOVIRUS VECTOR PLATFORM FOR DIPG IMMUNOTHERAPY

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi93-vi93
Author(s):  
Matthias Gromeier ◽  
Mubeen Mosaheb ◽  
Elena Dobrikova ◽  
Michael Brown ◽  
Darell Bigner ◽  
...  

Abstract Options for the immunotherapy of diffuse intrinsic pontine glioma (DIPG), due to its anatomical location and inherent therapy resistance, are limited. The histone 3.3(K27M) mutation in ~80% of such tumors offers a unique opportunity for immunotherapy intervention, as it defines a high affinity, HLA-A2-restricted tumor neoantigen that spontaneously elicits CD8+ T cell responses in DIPG patients. Immunizing against the H3.3(K27M) signature in the clinic has been challenging, as conventional approaches (i.e. peptide-conjugates administered with adjuvants) lack the costimulatory signals known to drive CD8+ effector T cell responses. Therefore, we built on a viral vector approach for engaging innate immune responses to virus infection specifically in antigen presenting cells. Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses can provide a context optimal for generating antigen-specific CD8 T cells, as they have natural tropism for dendritic cells, preeminent inducers of CD8 T cell immunity; elicit Th1-promoting inflammation; and lack interference with innate or adaptive immunity. However, notorious genetic instability and underlying neuropathogenicity has hampered poliovirus-based vector applications. We devised a strategy based on the polio:rhinovirus chimera PVSRIPO, devoid of viral neuropathogenicity after intracerebral inoculation in human subjects, for stable expression of exogenous antigens. PVSRIPO vectors infect, activate, and induce epitope presentation in DCs in vitro; recruit and activate DCs with Th1-dominant cytokine profiles at the injection site in vivo. They efficiently prime tumor antigen-specific CD8 T cells in vivo, induce CD8 T cell migration to the tumor site, delay tumor growth and enhance survival in syngeneic rodent tumor models. We are preparing a prototype PVSRIPO-derived vector delivering the H3.3(K27M) signature for clinical investigation.

2021 ◽  
Author(s):  
Leonardo Estrada ◽  
Didem Agac Cobanoglu ◽  
Aaron Wise ◽  
Robert Maples ◽  
Murat Can Cobanoglu ◽  
...  

Viral infections drive the expansion and differentiation of responding CD8+ T cells into variegated populations of cytolytic effector and memory cells. While pro-inflammatory cytokines and cell surface immune receptors play a key role in guiding T cell responses to infection, T cells are also markedly influenced by neurotransmitters. Norepinephrine is a key sympathetic neurotransmitter, which acts to suppress CD8 + T cell cytokine secretion and lytic activity by signaling through the beta2-adrenergic receptor (ADRB2). Although ADRB2 signaling is considered generally immunosuppressive, its role in regulating differentiation of effector T cells in response to infection has not been investigated. Using an adoptive transfer approach, we compared the expansion and differentiation of wild type (WT) to Adrb2-/- CD8 + T cells throughout the primary response to vesicular stomatitis virus (VSV) infection in vivo. We measured the dynamic changes in transcriptome profiles of antigen-specific CD8 + T cells as they responded to VSV. Within the first 7 days of infection, WT cells out-paced the expansion of Adrb2-/- cells, which correlated with reduced expression of IL-2 and the IL-2Ralpha; in the absence of ADRB2. RNASeq analysis identified over 300 differentially expressed genes that were both temporally regulated following infection and selectively regulated in WT vs Adrb2-/- cells. These genes contributed to major transcriptional pathways including cytokine receptor activation, signaling in cancer, immune deficiency, and neurotransmitter pathways. By parsing genes within groups that were either induced or repressed over time in response to infection, we identified three main branches of genes that were differentially regulated by the ADRB2. These gene sets were predicted to be regulated by specific transcription factors involved in effector T cell development, such as Tbx21 and Eomes. Collectively, these data demonstrate a significant role for ADRB2 signaling in regulating key transcriptional pathways during CD8 + T cells responses to infection that may dramatically impact their functional capabilities and downstream memory cell development.


2004 ◽  
Vol 200 (3) ◽  
pp. 297-306 ◽  
Author(s):  
Amy Morck Thomas ◽  
Lynn M. Santarsiero ◽  
Eric R. Lutz ◽  
Todd D. Armstrong ◽  
Yi-Cheng Chen ◽  
...  

Tumor-specific CD8+ T cells can potentially be activated by two distinct mechanisms of major histocompatibility complex class I–restricted antigen presentation as follows: direct presentation by tumor cells themselves or indirect presentation by professional antigen-presenting cells (APCs). However, controversy still exists as to whether indirect presentation (the cross-priming mechanism) can contribute to effective in vivo priming of tumor-specific CD8+ T cells that are capable of eradicating cancer in patients. A clinical trial of vaccination with granulocyte macrophage–colony stimulating factor–transduced pancreatic cancer lines was designed to test whether cross-presentation by locally recruited APCs can activate pancreatic tumor-specific CD8+ T cells. Previously, we reported postvaccination delayed-type hypersensitivity (DTH) responses to autologous tumor in 3 out of 14 treated patients. Mesothelin is an antigen demonstrated previously by gene expression profiling to be up-regulated in most pancreatic cancers. We report here the consistent induction of CD8+ T cell responses to multiple HLA-A2, A3, and A24-restricted mesothelin epitopes exclusively in the three patients with vaccine-induced DTH responses. Importantly, neither of the vaccinating pancreatic cancer cell lines expressed HLA-A2, A3, or A24. These results provide the first direct evidence that CD8 T cell responses can be generated via cross-presentation by an immunotherapy approach designed to recruit APCs to the vaccination site.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 61-61
Author(s):  
James Kochenderfer ◽  
Christopher Chien ◽  
Jessica Simpson ◽  
Ronald Gress

Abstract Development of CD8+ T cell responses targeting tumor-associated antigens after autologous stem cell transplants might eradicate residual tumor cells and decrease relapse rates. Because thymic function dramatically decreases with increasing age, CD8+ T cell reconstitution in the first few months after autologous stem cell transplant in middle-aged patients is primarily the result of homeostatic peripheral expansion (HPE) of mature T cells contained in the reinfused cells. To study antigen-specific T cell responses during HPE, we performed syngeneic bone marrow transplants (BMT) on mice that had been thymectomized at 4–6 weeks of age and then vaccinated the mice against a self-antigen. Tyrosinase-related-protein-2 (TRP-2) is a protein that expressed by normal melanocytes and the poorly immunogenic B16 melanoma. We vaccinated mice with a regimen consisting of an epitope from TRP-2 (TRP-2180–188) mixed with CpG-containing oligodeoxynucleotides (CpG ODN) in incomplete Freund’s adjuvant on days 14, 17, 20, and 28 after BMT. Interleukin-2 (IL-2) was administered on days 21–23 and days 29–32 after BMT. When TRP-2180–188-specific CD8+ T cell responses were measured on day 33 after BMT by ex vivo peptide stimulation of splenocytes followed by intracellular cytokine staining for interferon gamma, 9.1% of CD8+ T cells were specific for TRP-2180–188, and a mean absolute number of 2.3x106 TRP-2180–188-specific CD3+CD8+ splenocytes were detected in mice that received vaccination regimens including CpG ODN and IL-2. In contrast, when we administered the same regimen with control injections instead of IL-2, 4.0% of CD3+CD8+ splenocytes were specific for TRP-2180–188 (P<0.05 IL-2 versus control injections), and a mean of only 0.2x106 TRP-2180–188-specific CD3+CD8+ splenocytes were detected (P<0.01 IL-2 versus control injections). When mice were vaccinated with TRP-2180–188 without CpG ODN and IL-2 was administered, 1.4% of CD3+CD8+ splenocytes were specific for TRP-2180–188 (P<0.001 CpG ODN versus no CpG ODN), and 0.2x106 CD3+CD8+ splenocytes were TRP-2180–188-specific (P<0.001 CpG ODN versus no CpG ODN). To test the in vivo anti-tumor efficacy of the vaccine-elicited CD8+ T cells, we challenged mice subcutaneously on day 14 after BMT with B16 tumor cells and on the same day initiated vaccination with the regimen including TRP-2180–188+CpG ODN and IL-2 described above. As a negative control, we treated a second group of mice identically except that a control peptide, OVA257–264, was substituted for TRP-2180–188. Survival was enhanced in TRP-2180–188-vaccinated mice compared to OVA257–264-vaccinated mice (P=0.0007), and tumor growth was inhibited. The mean tumor size 25 days after tumor injection was 17.9 mm2 in TRP-2180–188-vaccinated mice versus 71.3 mm2 in OVA257–264-vaccinated mice (P=0.0009). Depletion of CD8+ T cells abrogated this epitope-specific anti-tumor effect. This is the first report to demonstrate that CD8+ T cells specific for a self-antigen and capable of effecting in vivo anti-tumor immunity can be elicited by vaccination from T cell repertoires undergoing reconstitution by HPE after BMT. The number of TRP-2180–188-specific CD8+ T cells elicited by vaccination after BMT was increased 10-fold by synergism between CpG ODN and IL-2.


Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1685-1697 ◽  
Author(s):  
Eynav Klechevsky ◽  
Anne-Laure Flamar ◽  
Yanying Cao ◽  
Jean-Philippe Blanck ◽  
Maochang Liu ◽  
...  

Abstract We evaluated human CD8+ T-cell responses generated by targeting antigens to dendritic cells (DCs) through various lectin receptors. We found the immunoreceptor tyrosine-based inhibitory motif-containing DC immunoreceptor (DCIR) to mediate potent cross-presentation. A single exposure to a low dose of anti-DCIR–antigen conjugate initiated antigen-specific CD8+ T-cell immunity by all human DC subsets including ex vivo–generated DCs, skin-isolated Langerhans cells, and blood myeloid DCs and plasmacytoid DCs. The delivery of influenza matrix protein (FluMP) through DCIR resulted in expansion of FluMP-specific memory CD8+ T cells. Enhanced specific CD8+ T-cell responses were observed when an antigen was delivered to the DCs via DCIR, compared with those induced by a free antigen, or antigen conjugated to a control monoclonal antibody or delivered via DC-SIGN, another lectin receptor. DCIR targeting also induced primary CD8+ T-cell responses against self (MART-1) and viral (HIV gag) antigens. Addition of Toll-like receptor (TLR) 7/8 agonist enhanced DCIR-mediated cross-presentation as well as cross-priming, particularly when combined with a CD40 signal. TLR7/8 activation was associated with increased expansion of the primed CD8+ T cells, high production of interferon-γ and tumor necrosis factor-α, and reduced levels of type 2–associated cytokines. Thus, antigen targeting via the human DCIR receptor allows activation of specific CD8+ T-cell immunity.


2020 ◽  
Vol 8 (1) ◽  
pp. e000258 ◽  
Author(s):  
Alan Chen Chen ◽  
Renhuan Xu ◽  
Tao Wang ◽  
Junping Wei ◽  
Xiao-Yi Yang ◽  
...  

BackgroundThe advent of immune checkpoint blockade antibodies has demonstrated that effective mobilization of T cell responses can cause tumor regression of metastatic cancers, although these responses are heterogeneous and restricted to certain histologic types of cancer. To enhance these responses, there has been renewed emphasis in developing effective cancer-specific vaccines to stimulate and direct T cell immunity to important oncologic targets, such as the oncogene human epidermal growth factor receptor 2 (HER2), expressed in ~20% of breast cancers (BCs).MethodsIn our study, we explored the use of alternative antigen trafficking through use of a lysosome-associated membrane protein 1 (LAMP) domain to enhance vaccine efficacy against HER2 and other model antigens in bothin vitroandin vivostudies.ResultsWe found that inclusion of this domain in plasmid vaccines effectively trafficked antigens to endolysosomal compartments, resulting in enhanced major histocompatibility complex (MHC) class I and II presentation. Additionally, this augmented the expansion/activation of antigen-specific CD4+ and CD8+ T cells and also led to elevated levels of antigen-specific polyfunctional CD8+ T cells. Significantly, vaccination with HER2-LAMP produced tumor regression in ~30% of vaccinated mice with established tumors in an endogenous model of metastatic HER2+ BC, compared with 0% of HER2-WT vaccinated mice. This therapeutic benefit is associated with enhanced tumor infiltration of activated CD4+ and CD8+ T cells.ConclusionsThese data demonstrate the potential of using LAMP-based endolysosomal trafficking as a means to augment the generation of polyfunctional, antigen-specific T cells in order to improve antitumor therapeutic responses using cancer antigen vaccines.


2021 ◽  
Author(s):  
Mariona Baliu-Pique ◽  
Julia Drylewicz ◽  
Xiaoyan Zheng ◽  
Lisa Borkner ◽  
Arpit C Swain ◽  
...  

The potential of memory T-cells to provide protection against re-infection is beyond question. Yet, it remains debated whether long-term T-cell memory is due to long-lived memory cells. There is ample evidence that blood-derived memory phenotype CD8+ T-cells maintain themselves through cell division, rather than through longevity of individual cells. It has recently been proposed, however, that there may be heterogeneity in the lifespans of memory T-cells, depending on factors such as exposure to cognate antigen. Cytomegalovirus (CMV) infection induces not only conventional, contracting T-cell responses, but also inflationary CD8+ T-cell responses, which are maintained at unusually high numbers, and are even thought to continue to expand over time. It has been proposed that such inflating T-cell responses result from the accumulation of relatively long-lived CMV-specific memory CD8+ T-cells. Using in vivo deuterium labelling and mathematical modelling, we found that the average production rates and expected lifespans of mouse CMV-specific CD8+ T-cells are very similar to those of bulk memory-phenotype CD8+ T-cells. Even CMV-specific inflationary CD8+ T-cell responses that differ three-fold in size, were found to turn over at similar rates.


1998 ◽  
Vol 188 (12) ◽  
pp. 2205-2213 ◽  
Author(s):  
Allan J. Zajac ◽  
Joseph N. Blattman ◽  
Kaja Murali-Krishna ◽  
David J.D. Sourdive ◽  
M. Suresh ◽  
...  

We examined the regulation of virus-specific CD8 T cell responses during chronic lymphocytic choriomeningitis virus (LCMV) infection of mice. Our study shows that within the same persistently infected host, different mechanisms can operate to silence antiviral T cell responses; CD8 T cells specific to one dominant viral epitope were deleted, whereas CD8 T cells responding to another dominant epitope persisted indefinitely. These virus-specific CD8 T cells expressed activation markers (CD69hi, CD44hi, CD62Llo) and proliferated in vivo but were unable to elaborate any antiviral effector functions. This unresponsive phenotype was more pronounced under conditions of CD4 T cell deficiency, highlighting the importance of CD8– CD4 T cell collaboration in controlling persistent infections. Importantly, in the presence of CD4 T cell help, adequate CD8 effector activity was maintained and the chronic viral infection eventually resolved. The persistence of activated virus-specific CD8 T cells without effector function reveals a novel mechanism for silencing antiviral immune responses and also offers new possibilities for enhancing CD8 T cell immunity in chronically infected hosts.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2021 ◽  
Author(s):  
Karolin I. Wagner ◽  
Laura M. Mateyka ◽  
Sebastian Jarosch ◽  
Vincent Grass ◽  
Simone Weber ◽  
...  

T cell immunity is crucial for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and has been widely characterized on a quantitative level. In contrast, the quality of such T cell responses has been poorly investigated, in particular in the case of CD8+ T cells. Here, we explored the quality of SARS-CoV-2-specific CD8+ T cell responses in individuals who recovered from mild symptomatic infections, through which protective immunity should develop, by functional characterization of their T cell receptor (TCR) repertoire. CD8+ T cell responses specific for SARS-CoV-2-derived epitopes were low in frequency but could be detected robustly early as well as late - up to twelve months - after infection. A pool of immunodominant epitopes, which accurately identified previous SARSCoV- 2 infections, was used to isolate TCRs specific for epitopes restricted by common HLA class I molecules. TCR-engineered T cells showed heterogeneous functional avidity and cytotoxicity towards virus-infected target cells. High TCR functionality correlated with gene signatures of T cell function and activation that, remarkably, could be retrieved for each epitope:HLA combination and patient analyzed. Overall, our data demonstrate that highly functional HLA class I TCRs are recruited and maintained upon mild SARS-CoV-2 infection. Such validated epitopes and TCRs could become valuable tools for the development of diagnostic tests determining the quality of SARS-CoV-2-specific CD8+ T cell immunity, and thereby investigating correlates of protection, as well as to restore functional immunity through therapeutic transfer of TCR-engineered T cells.


Sign in / Sign up

Export Citation Format

Share Document