A Vaccination Regimen Incorporating the Synergistic Combination of CpG-Containing Oligodeoxynucleotides and IL-2 Can Elicit CD8+ T Cell Responses That Effect Anti-Tumor Immunity from T Cell Repertoires Undergoing Reconstitution by Homeostatic Peripheral Expansion after BMT.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 61-61
Author(s):  
James Kochenderfer ◽  
Christopher Chien ◽  
Jessica Simpson ◽  
Ronald Gress

Abstract Development of CD8+ T cell responses targeting tumor-associated antigens after autologous stem cell transplants might eradicate residual tumor cells and decrease relapse rates. Because thymic function dramatically decreases with increasing age, CD8+ T cell reconstitution in the first few months after autologous stem cell transplant in middle-aged patients is primarily the result of homeostatic peripheral expansion (HPE) of mature T cells contained in the reinfused cells. To study antigen-specific T cell responses during HPE, we performed syngeneic bone marrow transplants (BMT) on mice that had been thymectomized at 4–6 weeks of age and then vaccinated the mice against a self-antigen. Tyrosinase-related-protein-2 (TRP-2) is a protein that expressed by normal melanocytes and the poorly immunogenic B16 melanoma. We vaccinated mice with a regimen consisting of an epitope from TRP-2 (TRP-2180–188) mixed with CpG-containing oligodeoxynucleotides (CpG ODN) in incomplete Freund’s adjuvant on days 14, 17, 20, and 28 after BMT. Interleukin-2 (IL-2) was administered on days 21–23 and days 29–32 after BMT. When TRP-2180–188-specific CD8+ T cell responses were measured on day 33 after BMT by ex vivo peptide stimulation of splenocytes followed by intracellular cytokine staining for interferon gamma, 9.1% of CD8+ T cells were specific for TRP-2180–188, and a mean absolute number of 2.3x106 TRP-2180–188-specific CD3+CD8+ splenocytes were detected in mice that received vaccination regimens including CpG ODN and IL-2. In contrast, when we administered the same regimen with control injections instead of IL-2, 4.0% of CD3+CD8+ splenocytes were specific for TRP-2180–188 (P<0.05 IL-2 versus control injections), and a mean of only 0.2x106 TRP-2180–188-specific CD3+CD8+ splenocytes were detected (P<0.01 IL-2 versus control injections). When mice were vaccinated with TRP-2180–188 without CpG ODN and IL-2 was administered, 1.4% of CD3+CD8+ splenocytes were specific for TRP-2180–188 (P<0.001 CpG ODN versus no CpG ODN), and 0.2x106 CD3+CD8+ splenocytes were TRP-2180–188-specific (P<0.001 CpG ODN versus no CpG ODN). To test the in vivo anti-tumor efficacy of the vaccine-elicited CD8+ T cells, we challenged mice subcutaneously on day 14 after BMT with B16 tumor cells and on the same day initiated vaccination with the regimen including TRP-2180–188+CpG ODN and IL-2 described above. As a negative control, we treated a second group of mice identically except that a control peptide, OVA257–264, was substituted for TRP-2180–188. Survival was enhanced in TRP-2180–188-vaccinated mice compared to OVA257–264-vaccinated mice (P=0.0007), and tumor growth was inhibited. The mean tumor size 25 days after tumor injection was 17.9 mm2 in TRP-2180–188-vaccinated mice versus 71.3 mm2 in OVA257–264-vaccinated mice (P=0.0009). Depletion of CD8+ T cells abrogated this epitope-specific anti-tumor effect. This is the first report to demonstrate that CD8+ T cells specific for a self-antigen and capable of effecting in vivo anti-tumor immunity can be elicited by vaccination from T cell repertoires undergoing reconstitution by HPE after BMT. The number of TRP-2180–188-specific CD8+ T cells elicited by vaccination after BMT was increased 10-fold by synergism between CpG ODN and IL-2.

2021 ◽  
Author(s):  
Leonardo Estrada ◽  
Didem Agac Cobanoglu ◽  
Aaron Wise ◽  
Robert Maples ◽  
Murat Can Cobanoglu ◽  
...  

Viral infections drive the expansion and differentiation of responding CD8+ T cells into variegated populations of cytolytic effector and memory cells. While pro-inflammatory cytokines and cell surface immune receptors play a key role in guiding T cell responses to infection, T cells are also markedly influenced by neurotransmitters. Norepinephrine is a key sympathetic neurotransmitter, which acts to suppress CD8 + T cell cytokine secretion and lytic activity by signaling through the beta2-adrenergic receptor (ADRB2). Although ADRB2 signaling is considered generally immunosuppressive, its role in regulating differentiation of effector T cells in response to infection has not been investigated. Using an adoptive transfer approach, we compared the expansion and differentiation of wild type (WT) to Adrb2-/- CD8 + T cells throughout the primary response to vesicular stomatitis virus (VSV) infection in vivo. We measured the dynamic changes in transcriptome profiles of antigen-specific CD8 + T cells as they responded to VSV. Within the first 7 days of infection, WT cells out-paced the expansion of Adrb2-/- cells, which correlated with reduced expression of IL-2 and the IL-2Ralpha; in the absence of ADRB2. RNASeq analysis identified over 300 differentially expressed genes that were both temporally regulated following infection and selectively regulated in WT vs Adrb2-/- cells. These genes contributed to major transcriptional pathways including cytokine receptor activation, signaling in cancer, immune deficiency, and neurotransmitter pathways. By parsing genes within groups that were either induced or repressed over time in response to infection, we identified three main branches of genes that were differentially regulated by the ADRB2. These gene sets were predicted to be regulated by specific transcription factors involved in effector T cell development, such as Tbx21 and Eomes. Collectively, these data demonstrate a significant role for ADRB2 signaling in regulating key transcriptional pathways during CD8 + T cells responses to infection that may dramatically impact their functional capabilities and downstream memory cell development.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3679-3679 ◽  
Author(s):  
Katayoun Rezvani ◽  
Agnes Yong ◽  
Stephan Mielke ◽  
Bipin N. Savani ◽  
David A. Price ◽  
...  

Abstract There is clinical evidence that a graft-versus-leukemia (GVL) effect occurs following allogeneic stem cell transplantation for acute lymphoblastic leukemia (ALL). However, the potency of this GVL effect is often associated with unwanted graft-versus-host-disease (GVHD) and disease relapse remains a major contributor to treatment failure. Wilms’ tumor gene 1 (WT1) is overexpressed in 70–90% of cases of ALL and has been identified as a convenient minimal residual disease (MRD) marker. WT1 is an attractive immunotherapeutic target in ALL because peptides derived from WT1 can induce CD8+ T-cell responses, and being non-allelic, WT1 would be unlikely to provoke GVHD. We investigated whether CD8+ T-cells directed against an HLA-A*0201 restricted epitope of WT1 (WT126) occur in ALL patients during the early phase of immune reconstitution post-SCT (days 30–180). We analyzed CD8+ T-cell responses against WT1 in 10 HLA-A*0201+ ALL SCT recipients and their respective donors using WT1/HLA-A*0201 tetrameric complexes and flow cytometry for intracellular IFN-gamma. We studied the kinetics WT1-specific CD8+ T-cell responses in consecutive samples obtained post-SCT. CD8+ T-cells recognizing WT1 were detected ex vivo in samples from 5 of 10 ALL patients post-SCT but not in patients pre-SCT. WT1-tetramer+ CD8+ T cells had a predominantly effector memory phenotype (CD45RO+CD27−CD57+). WT1 gene expression in pre-SCT and donor samples was assayed by quantitative real-time PCR (RQ-PCR). WT1 expression in PBMC from healthy donors was significantly lower than in patients (median 0, range 0–66 ×10−4 WT1/ABL compared to patients, median 12, range 0–2275 ×10−4 WT1/ABL) (P < 0.01). There was a strong correlation between the emergence of WT1-specific CD8+ T cells and a reduction in WT1 gene expression (P < 0.001) (as depicted below) suggesting direct anti-ALL activity post-SCT. Disappearance of WT1-specific CD8+ T-cells from the blood coincided with reappearance of WT1 gene transcripts, consistent with a molecular relapse, further supporting the direct involvement of WT1-specific CD8+ T-cells in the GVL response. These results provide evidence for the first time of spontaneous T-cell reactivity against a leukemia antigen in ALL patients. Our results support the immunogenicity of WT1 in ALL patients post-SCT and a potential application for WT1 peptides in post-transplant immunotherapy of ALL. Figure Figure


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi93-vi93
Author(s):  
Matthias Gromeier ◽  
Mubeen Mosaheb ◽  
Elena Dobrikova ◽  
Michael Brown ◽  
Darell Bigner ◽  
...  

Abstract Options for the immunotherapy of diffuse intrinsic pontine glioma (DIPG), due to its anatomical location and inherent therapy resistance, are limited. The histone 3.3(K27M) mutation in ~80% of such tumors offers a unique opportunity for immunotherapy intervention, as it defines a high affinity, HLA-A2-restricted tumor neoantigen that spontaneously elicits CD8+ T cell responses in DIPG patients. Immunizing against the H3.3(K27M) signature in the clinic has been challenging, as conventional approaches (i.e. peptide-conjugates administered with adjuvants) lack the costimulatory signals known to drive CD8+ effector T cell responses. Therefore, we built on a viral vector approach for engaging innate immune responses to virus infection specifically in antigen presenting cells. Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses can provide a context optimal for generating antigen-specific CD8 T cells, as they have natural tropism for dendritic cells, preeminent inducers of CD8 T cell immunity; elicit Th1-promoting inflammation; and lack interference with innate or adaptive immunity. However, notorious genetic instability and underlying neuropathogenicity has hampered poliovirus-based vector applications. We devised a strategy based on the polio:rhinovirus chimera PVSRIPO, devoid of viral neuropathogenicity after intracerebral inoculation in human subjects, for stable expression of exogenous antigens. PVSRIPO vectors infect, activate, and induce epitope presentation in DCs in vitro; recruit and activate DCs with Th1-dominant cytokine profiles at the injection site in vivo. They efficiently prime tumor antigen-specific CD8 T cells in vivo, induce CD8 T cell migration to the tumor site, delay tumor growth and enhance survival in syngeneic rodent tumor models. We are preparing a prototype PVSRIPO-derived vector delivering the H3.3(K27M) signature for clinical investigation.


2004 ◽  
Vol 200 (3) ◽  
pp. 297-306 ◽  
Author(s):  
Amy Morck Thomas ◽  
Lynn M. Santarsiero ◽  
Eric R. Lutz ◽  
Todd D. Armstrong ◽  
Yi-Cheng Chen ◽  
...  

Tumor-specific CD8+ T cells can potentially be activated by two distinct mechanisms of major histocompatibility complex class I–restricted antigen presentation as follows: direct presentation by tumor cells themselves or indirect presentation by professional antigen-presenting cells (APCs). However, controversy still exists as to whether indirect presentation (the cross-priming mechanism) can contribute to effective in vivo priming of tumor-specific CD8+ T cells that are capable of eradicating cancer in patients. A clinical trial of vaccination with granulocyte macrophage–colony stimulating factor–transduced pancreatic cancer lines was designed to test whether cross-presentation by locally recruited APCs can activate pancreatic tumor-specific CD8+ T cells. Previously, we reported postvaccination delayed-type hypersensitivity (DTH) responses to autologous tumor in 3 out of 14 treated patients. Mesothelin is an antigen demonstrated previously by gene expression profiling to be up-regulated in most pancreatic cancers. We report here the consistent induction of CD8+ T cell responses to multiple HLA-A2, A3, and A24-restricted mesothelin epitopes exclusively in the three patients with vaccine-induced DTH responses. Importantly, neither of the vaccinating pancreatic cancer cell lines expressed HLA-A2, A3, or A24. These results provide the first direct evidence that CD8 T cell responses can be generated via cross-presentation by an immunotherapy approach designed to recruit APCs to the vaccination site.


2021 ◽  
Author(s):  
Mariona Baliu-Pique ◽  
Julia Drylewicz ◽  
Xiaoyan Zheng ◽  
Lisa Borkner ◽  
Arpit C Swain ◽  
...  

The potential of memory T-cells to provide protection against re-infection is beyond question. Yet, it remains debated whether long-term T-cell memory is due to long-lived memory cells. There is ample evidence that blood-derived memory phenotype CD8+ T-cells maintain themselves through cell division, rather than through longevity of individual cells. It has recently been proposed, however, that there may be heterogeneity in the lifespans of memory T-cells, depending on factors such as exposure to cognate antigen. Cytomegalovirus (CMV) infection induces not only conventional, contracting T-cell responses, but also inflationary CD8+ T-cell responses, which are maintained at unusually high numbers, and are even thought to continue to expand over time. It has been proposed that such inflating T-cell responses result from the accumulation of relatively long-lived CMV-specific memory CD8+ T-cells. Using in vivo deuterium labelling and mathematical modelling, we found that the average production rates and expected lifespans of mouse CMV-specific CD8+ T-cells are very similar to those of bulk memory-phenotype CD8+ T-cells. Even CMV-specific inflationary CD8+ T-cell responses that differ three-fold in size, were found to turn over at similar rates.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2162-2169 ◽  
Author(s):  
Simon Rothenfusser ◽  
Veit Hornung ◽  
Maha Ayyoub ◽  
Stefanie Britsch ◽  
Andreas Towarowski ◽  
...  

Abstract Two distinct types of CpG oligodeoxynucleotide (ODN) have been identified that differ in their capacity to stimulate antigen-presenting cells: CpG-A induces high amounts of interferon-α (IFN-α) and IFN-β in plasmacytoid dendritic cells (PDCs), whereas CpG-B induces PDC maturation and is a potent activator of B cells but stimulates only small amounts of IFN-α and IFN-β. Here we examined the ability of these CpG ODNs to enhance peptide-specific CD8+ T-cell responses in human peripheral blood mononuclear cells (PBMCs). The frequency of influenza matrix–specific “memory” CD8+ T cells was increased by both types of CpG ODN, whereas the frequency of Melan-A specific “naive” CD8+ T cells increased on stimulation with CpG-B but not with CpG-A. The presence of PDCs in PBMCs was required for this CpG ODN-mediated effect. The expanded cells were cytotoxic and produced IFN-γ on peptide restimulation. Soluble factors induced by CpG-A but not CpG-B increased the granzyme-B content and cytotoxicity of established CD8+ T-cell clones, each of which was IFN-α/-β dependent. In conclusion, CpG-B seems to be superior for priming CD8+ T-cell responses, and CpG-A selectively enhances memory CD8+ T-cell responses and induces cytotoxicity. These results demonstrate distinct functional properties of CpG-A and CpG-B with regard to CD8 T cells.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Alexandria C Wells ◽  
Keith A Daniels ◽  
Constance C Angelou ◽  
Eric Fagerberg ◽  
Amy S Burnside ◽  
...  

The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses.


2021 ◽  
Author(s):  
Suhas Sureshchandra ◽  
Sloan A. Lewis ◽  
Brianna Doratt ◽  
Allen Jankeel ◽  
Izabela Ibraim ◽  
...  

mRNA based vaccines for SARS-CoV-2 have shown exceptional clinical efficacy providing robust protection against severe disease. However, our understanding of transcriptional and repertoire changes following full vaccination remains incomplete. We used single-cell RNA sequencing and functional assays to compare humoral and cellular responses to two doses of mRNA vaccine with responses observed in convalescent individuals with asymptomatic disease. Our analyses revealed enrichment of spike-specific B cells, activated CD4 T cells, and robust antigen-specific polyfunctional CD4 T cell responses in all vaccinees. On the other hand, CD8 T cell responses were both weak and variable. Interestingly, clonally expanded CD8 T cells were observed in every vaccinee, as observed following natural infection. TCR gene usage, however, was variable, reflecting the diversity of repertoires and MHC polymorphism in the human population. Natural infection induced expansion of larger CD8 T cell clones occupied distinct clusters, likely due to the recognition of a broader set of viral epitopes presented by the virus not seen in the mRNA vaccine. Our study highlights a coordinated adaptive immune response where early CD4 T cell responses facilitate the development of the B cell response and substantial expansion of effector CD8 T cells, together capable of contributing to future recall responses.


Sign in / Sign up

Export Citation Format

Share Document