scholarly journals NGMA-5. An in vivo functional genomics screen to identify novel drivers of lung-to-brain metastasis

2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii5-ii5
Author(s):  
Nikoo Aghaei ◽  
Fred C Lam ◽  
Ekkhard Kasper ◽  
Chitra Venugopal ◽  
Sheila Singh

Abstract Introduction Brain metastases, the most common tumors of the central nervous system, occur in approximately 20% of primary adult cancers. In particular, 40% of patients with non-small cell lung cancer develop brain metastasis. As systemic therapies for the treatment of non-small cell lung cancer become increasingly effective at controlling primary disease, patients are ironically succumbing to their brain metastases. This highlights a large unmet need to develop novel targeted therapies for the treatment of lung-to-brain metastases (LBM). We hypothesize that an in vivo functional genomic screen can identify novel genes that drive LBM. Methods To do this, we developed a patient-derived xenograft (PDX) mouse model of LBM using patient lung cancer cell lines. This PDX model of LBM enables the use of fluorescent and bioluminescent in vivo imaging to track the progression of lung tumor and brain metastases. Results We have performed an in vivo genome-wide CRISPR activation screening to identify novel drivers of LBM. We will derive candidate genes through mouse brain and lung tissue sequencing after mice reach endpoint. Expected Area of findings This platform will lead to potential therapeutic targets to prevent the formation of LBM and prolong the survival of patients with non-small cell lung cancer. Conclusion To the best of our knowledge, this is the first genome-wide in vivo CRISPR activation screen searching for drivers of LBM using a PDX animal model. This study can provide a framework to gain a deeper understanding of the regulators of BM formation which will hopefully lead to targeted drug discovery.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi215-vi215
Author(s):  
Nikoo Aghaei ◽  
Fred C Lam ◽  
Ekkhard Kasper ◽  
Chitra Venugopal ◽  
Sheila K Singh

Abstract INTRODUCTION Brain metastases, the most common tumors of the central nervous system, occur in approximately 20% of primary adult cancers. In particular, 40% of patients with non-small cell lung cancer develop brain metastasis. As systemic therapies for the treatment of non-small cell lung cancer become increasingly effective at controlling primary disease, patients are ironically succumbing to their brain metastases. This highlights a large unmet need to develop novel targeted therapies for the treatment of lung-to-brain metastases (LBM). We hypothesize that an in vivo functional genomic screen can identify novel genes that drive LBM. METHODS To do this, we developed a patient-derived xenograft (PDX) mouse model of LBM using patient lung cancer cell lines. This PDX model of LBM enables the use of fluorescent and bioluminescent in vivo imaging to track the progression of lung tumor and brain metastases. RESULTS We have performed an in vivo genome-wide CRISPR activation screening to identify novel drivers of LBM. We will derive candidate genes through mouse brain and lung tissue sequencing after mice reach endpoint. EXPECTED AREA OF FINDINGS This platform will lead to potential therapeutic targets to prevent the formation of LBM and prolong the survival of patients with non-small cell lung cancer. LIMITATIONS There may be limitations in getting candidate hits that overlap in all mice in our first replicate. This can be remedied by conducting the in vivo screen in at least three biological replicates. CONCLUSION To the best of our knowledge, this is the first genome-wide in vivo CRISPR activation screen searching for drivers of LBM using a PDX animal model. This study can provide a framework to gain a deeper understanding of the regulators of BM formation which will hopefully lead to targeted drug discovery.


2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii5-iii5
Author(s):  
Nikoo Aghaei ◽  
Fred C Lam ◽  
Ekkehard Kasper ◽  
Chitra Venugopal ◽  
Sheila Singh

Abstract Introduction Brain metastases, the most common tumors of the central nervous system, occur in approximately 20% of primary adult cancers. In particular, 40% of patients with non-small cell lung cancer develop brain metastasis. As systemic therapies for the treatment of non-small cell lung cancer become increasingly effective at controlling primary disease, patients are ironically succumbing to their brain metastases. This highlights a large unmet need to develop novel targeted therapies for the treatment of lung-to-brain metastases (LBM). We hypothesize that an in vivo functional genomic screen can identify novel genes that drive LBM. Methods To do this, we developed a patient-derived xenograft (PDX) mouse model of LBM using patient lung cancer cell lines. This PDX model of LBM enables the use of fluorescent and bioluminescent in vivo imaging to track the progression of lung tumor and brain metastases. Results We have performed an in vivo genome-wide CRISPR activation screening to identify novel drivers of LBM. We will derive candidate genes through mouse brain and lung tissue sequencing after mice reach endpoint. Expected Area of findings This platform will lead to potential therapeutic targets to prevent the formation of LBM and prolong the survival of patients with non-small cell lung cancer. Limitations There may be limitations in getting candidate hits that overlap in all mice in our first replicate. This can be remedied by conducting the in vivo screen in at least three biological replicates. Conclusion To the best of our knowledge, this is the first genome-wide in vivo CRISPR activation screen searching for drivers of LBM using a PDX animal model. This study can provide a framework to gain a deeper understanding of the regulators of BM formation which will hopefully lead to targeted drug discovery.


2019 ◽  
Vol 37 (1) ◽  
pp. 199-207
Author(s):  
Chinami Masuda ◽  
Masamichi Sugimoto ◽  
Daiko Wakita ◽  
Makoto Monnai ◽  
Chisako Ishimaru ◽  
...  

AbstractBrain metastases are common in patients with non-small-cell lung cancer (NSCLC). The efficacy of bevacizumab, an anti-vascular endothelial growth factor (VEGF) humanized antibody, has been demonstrated in patients with nonsquamous NSCLC. We established a transplantable NSCLC cell line (Nluc-H1915) that stably expresses NanoLuc® reporter and confirmed the correlation between total Nluc activity in tumor and tumor volume in vivo. SCID mice inoculated with these cells through the internal carotid artery formed reproducible brain metastases, in which human VEGF was detected. Next, after metastases were established in the model mice (15–17 days), they were intraperitoneally administered weekly doses of human immunoglobulin G (HuIgG) or bevacizumab. Nluc activity in the brain was significantly lower in bevacizumab-treated mice than in HuIgG-treated mice. Additionally, bevacizumab concentration in the brain was higher in mice with brain metastasis than in normal mice, and bevacizumab was primarily observed in brain metastasis lesions. The microvessel density in brain metastasis was lower in bevacizumab-treated mice than in HuIgG-treated mice. We believe bevacizumab’s anti-proliferative effect on brain metastasis is due to anti-angiogenic activity achieved by its penetration into brain metastases; this suggests that a bevacizumab-containing regimen may be a promising treatment option for patients with NSCLC brain metastasis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ling-yun Ye ◽  
Li-xiang Sun ◽  
Xiu-hua Zhong ◽  
Xue-song Chen ◽  
Song Hu ◽  
...  

Abstract Background Brain metastasis is an important cause of increased mortality in patients with non-small cell lung cancer (NSCLC). In brain metastasis, the blood–brain barrier (BBB) is frequently impaired, forming blood–tumor barrier (BTB). The efficacy of chemotherapy is usually very poor. However, the characteristics of BTB and the impacts of BTB on chemotherapeutic drug delivery remain unclear. The present study investigated the structure of BTB, as well as the distribution of routine clinical chemotherapeutic drugs in both brain and peripheral tumors. Methods Bioluminescent image was used to monitor the tumor load after intracranial injection of lung cancer Lewis cells in mice. The permeability of BBB and BTB was measured by fluorescent tracers of evans blue and fluorescein sodium. Transmission electron microscopy (TEM), immunohistochemistry and immunofluorescence were performed to analyze structural differences between BBB and BTB. The concentrations of chemotherapeutic drugs (gemcitabine, paclitaxel and pemetrexed) in tissues were assayed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results Brain metastases exhibited increased BTB permeability compared with normal BBB detected by fluorescence tracers. TEM showed abnormal blood vessels, damaged endothelial cells, thick basement membranes, impaired intercellular endothelial tight junctions, as well as increased fenestrae and pinocytotic vesicles in metastatic lesions. Immunohistochemistry and immunofluorescence revealed that astrocytes were distributed surrounded the blood vessels both in normal brain and the tumor border, but no astrocytes were found in the inner metastatic lesions. By LC-MS/MS analysis, gemcitabine showed higher permeability in brain metastases. Conclusions Brain metastases of lung cancer disrupted the structure of BBB, and this disruption was heterogeneous. Chemotherapeutic drugs can cross the BTB of brain metastases of lung cancer but have difficulty crossing the normal BBB. Among the three commonly used chemotherapy drugs, gemcitabine has the highest distribution in brain metastases. The permeability of chemotherapeutic agents is related to their molecular weight and liposolubility.


2020 ◽  
Author(s):  
Kejun Liu ◽  
Guanming Jiang ◽  
Ailing Zhang ◽  
Zhuanghua Li ◽  
Jun Jia

Abstract Background: The prognosis of non-small-cell lung cancer (NSCLC) with brain metastases is very poor. Currently, therapeutic methods for this patient population include whole-brain radiation therapy (WBRT), surgery, radiosurgery and systemic treatment. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) could be effective on cerebral metastases of mutated NSCLC. However, which EGFR-TKIs is more appropriate is still unknown. Methods: We conducted a retrospective analysis of advanced NSCLC patients with brain metastases for EGFR targeted therapy from November 2013 to April 2018 at Dongguan People’s Hospital, Southern Medical University, China. A total of 43 patients were recruit in this study. Among them, 21 cases received icotinib (125 mg, thrice a day) and 22 cases received gefitinib (250 mg, once a day) until disease progression or unacceptable toxicity. The primary end point of this study was intracranial PFS (iPFS). The relationships between therapeutic arms and patients characteristics were performed using Pearson’s chi-square test or Fisher’s exact test. The differences in PFS among the two arms were analyzed using Kaplan-Meier curves and log rank tests. Results: There was no significant difference of intracranial ORR (66.6% versus 59.1%, P =0.62) and DCR (85.7% versus 81.8%, P =0.73) between the two arms. The median intracranial PFS (iPFS) for icotinib and gefitinib arms were 8.4 months (95% CI, 5.4 to 11.3 months) and 10.6 months (95% CI, 6.3 to 14.8 months), respectively (P =0.17). Adverse events of the two study arms were generally mild. None of the patients experienced dose reduction of EGFR-TKIs. Conclusions: Our study showed that icotinib and gefitinib had similar efficacy for brain metastasis of EGFR mutated NSCLC. Large randomized studies are suggested to further illuminate the effect of these two EGFR-TKIs on cerebral lesions of NSCLC.


2021 ◽  
Vol 20 ◽  
pp. 153303382110049
Author(s):  
Rachel Grossman ◽  
Oz Haim ◽  
Shani Abramov ◽  
Ben Shofty ◽  
Moran Artzi

Differentiation between small-cell lung cancer (SCLC) from non-small-cell lung cancer (NSCLC) brain metastases is crucial due to the different clinical behaviors of the two tumor types. We propose the use of a deep learning and transfer learning approach based on conventional magnetic resonance imaging (MRI) for non-invasive classification of SCLC vs. NSCLC brain metastases. Sixty-nine patients with brain metastasis of lung cancer origin were included. Of them, 44 patients had NSCLC and 25 patients had SCLC. Classification was performed with EfficientNet architecture on crop images of lesion areas and based on post-contrast T1-weighted, T2-weighted and FLAIR imaging input data. Evaluation of the model was carried out in a 5-fold cross-validation manner, and based on accuracy, precision, recall, F1 score and area under the receiver operating characteristic curve. The best classification results were obtained with multiparametric MRI input data (T1WI+c+FLAIR+T2WI), with a mean overall accuracy of 0.90 ± 0.04, and F1 score of 0.92 ± 0.05 for NSCLC and 0.87 ± 0.08 for SCLC for the validation data and an accuracy of 0.87 ± 0.05, with an F1 score of 0.88 ± 0.05 for NSCLC and 0.85 ± 0.05 for SCLC for the test dataset. The proposed method provides an automatic noninvasive method for the classification of brain metastasis with high sensitivity and specificity for differentiation between NSCLC vs. SCLC brain metastases. It may be used as a diagnostic tool for improving decision-making in the treatment of patients with these metastases. Further studies on larger patient samples are required to validate the current results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew M. Baschnagel ◽  
Saakshi Kaushik ◽  
Arda Durmaz ◽  
Steve Goldstein ◽  
Irene M. Ong ◽  
...  

AbstractNon-small cell lung cancer (NSCLC) brain metastasis cell lines and in vivo models are not widely accessible. Herein we report on a direct-from patient-derived xenograft (PDX) model system of NSCLC brain metastases with genomic annotation useful for translational and mechanistic studies. Both heterotopic and orthotopic intracranial xenografts were established and RNA and DNA sequencing was performed on patient and matching tumors. Morphologically, strong retention of cytoarchitectural features was observed between original patient tumors and PDXs. Transcriptome and mutation analysis revealed high correlation between matched patient and PDX samples with more than more than 95% of variants detected being retained in the matched PDXs. PDXs demonstrated response to radiation, response to selumetinib in tumors harboring KRAS G12C mutations and response to savolitinib in a tumor with MET exon 14 skipping mutation. Savolitinib also demonstrated in vivo radiation enhancement in our MET exon 14 mutated PDX. Early passage cell strains showed high consistency between patient and PDX tumors. Together, these data describe a robust human xenograft model system for investigating NSCLC brain metastases. These PDXs and cell lines show strong phenotypic and molecular correlation with the original patient tumors and provide a valuable resource for testing preclinical therapeutics.


2012 ◽  
Vol 30 (30_suppl) ◽  
pp. 92-92
Author(s):  
Masaki Hanibuchi ◽  
Sun-Jin Kim ◽  
Kenji Otsuka ◽  
Sho Tabata ◽  
Takuya Kuramoto ◽  
...  

92 Background: Treatment of patients with lung cancer brain metastases remains a major challenge because of the limited availability of standard therapy. Thus, the development of successful treatment options for these patients is mandatory. Recently, the endothelin axis was reported to be involved in cancer progression through its pleiotropic biological effects on cell survival, proliferation, invasion, and metastasis. Methods: In this study, we evaluated both the in vitro and in vivoeffects of macitentan, an orally bioavailable, dual endothelin A receptor and endothelin B receptor antagonist, as monotherapy, and in combination with paclitaxel. Results: In human non-small cell lung cancer PC-14 cells, macitentan treatment inhibited cell proliferation, corresponding with inhibition of Akt and p42/44 mitogen-activated protein kinase phosphorylation, and increased apoptosis. The combination of macitentan and paclitaxel resulted in the potentiation of all of these effects, suggesting that macitentan could enhance sensitivity to paclitaxel. Moreover, macitentan completely abrogated astrocyte-mediated protection of tumor cells against paclitaxel. In an experimental brain metastasis model of human lung cancer, the combination of macitentan and paclitaxel significantly inhibited the growth of brain metastasis and produced a striking survival prolongation of tumor-bearing mice. Conclusions: The endothelin A and B receptor blockade by macitentan could be a promising therapeutic strategy for brain metastases of non-small cell lung cancer.


2016 ◽  
Vol 34 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Kimberly L. Johung ◽  
Norman Yeh ◽  
Neil B. Desai ◽  
Terence M. Williams ◽  
Tim Lautenschlaeger ◽  
...  

Purpose We performed a multi-institutional study to identify prognostic factors and determine outcomes for patients with ALK-rearranged non–small-cell lung cancer (NSCLC) and brain metastasis. Patients and Methods A total of 90 patients with brain metastases from ALK-rearranged NSCLC were identified from six institutions; 84 of 90 patients received radiotherapy to the brain (stereotactic radiosurgery [SRS] or whole-brain radiotherapy [WBRT]), and 86 of 90 received tyrosine kinase inhibitor (TKI) therapy. Estimates for overall (OS) and intracranial progression-free survival were determined and clinical prognostic factors were identified by Cox proportional hazards modeling. Results Median OS after development of brain metastases was 49.5 months (95% CI, 29.0 months to not reached), and median intracranial progression-free survival was 11.9 months (95% CI, 10.1 to 18.2 months). Forty-five percent of patients with follow-up had progressive brain metastases at death, and repeated interventions for brain metastases were common. Absence of extracranial metastases, Karnofsky performance score ≥ 90, and no history of TKIs before development of brain metastases were associated with improved survival (P = .003, < .001, and < .001, respectively), whereas a single brain metastasis or initial treatment with SRS versus WBRT were not (P = .633 and .666, respectively). Prognostic factors significant by multivariable analysis were used to describe four patient groups with 2-year OS estimates of 33%, 59%, 76%, and 100%, respectively (P < .001). Conclusion Patients with brain metastases from ALK-rearranged NSCLC treated with radiotherapy (SRS and/or WBRT) and TKIs have prolonged survival, suggesting that interventions to control intracranial disease are critical. The refinement of prognosis for this molecular subtype of NSCLC identifies a population of patients likely to benefit from first-line SRS, close CNS observation, and treatment of emergent CNS disease.


Sign in / Sign up

Export Citation Format

Share Document