scholarly journals OTHR-13. A DEEP LEARNING APPROACH TO DETECT CANCER METASTASES TO THE BRAIN IN MRI

2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i20-i21
Author(s):  
Min Zhang ◽  
Geoffrey Young ◽  
Huai Chen ◽  
Lei Qin ◽  
Xinhua Cao ◽  
...  

Abstract BACKGROUND AND OBJECTIVE: Brain metastases have been found to account for one-fourth of all cancer metastases seen in clinics. Magnetic resonance imaging (MRI) is widely used for detecting brain metastases. Accurate detection of the brain metastases is critical to design radiotherapy to treat the cancer and monitor their progression or response to the therapy and prognosis. However, finding metastases on brain MRI is very challenging as many metastases are small and manifest as objects of weak contrast on the images. In this work we present a deep learning approach integrated with a classification scheme to detect cancer metastases to the brain on MRI. MATERIALS AND METHODS: We retrospectively extracted 101 metastases patients, equal to 1535 metastases on 10192 slices of images in a total of 336 scans from our PACS and manually marked the lesions on T1-weighted contrast enhanced MRI as the ground-truth. We then randomly separated the cases into training, validation, and test sets for developing and optimizing the deep learning neural network. We designed a 2-step computer-aided detection (CAD) pipeline by first applying a fast region-based convolutional neural network method (R-CNN) to sequentially process each slice of an axial brain MRI to find abnormal hyper-intensity that may correspond to a brain metastasis and, second, applying a random under sampling boost (RUSBoost) classification method to reduce the false positive metastases. RESULTS: The computational pipeline was tested on real brain images. A sensitivity of 97.28% and false positive rate of 36.25 per scan over the images were achieved by using the proposed method. CONCLUSION: Our results demonstrated the deep learning-based method can detect metastases in very challenging cases and can serve as CAD tool to help radiologists interpret brain MRIs in a time-constrained environment.

Author(s):  
Zi Yang ◽  
Mingli Chen ◽  
Mahdieh Kazemimoghadam ◽  
Lin Ma ◽  
Strahinja Stojadinovic ◽  
...  

Abstract Stereotactic radiosurgery (SRS) is now the standard of care for brain metastases (BMs) patients. The SRS treatment planning process requires precise target delineation, which in clinical workflow for patients with multiple (>4) BMs (mBMs) could become a pronounced time bottleneck. Our group has developed an automated BMs segmentation platform to assist in this process. The accuracy of the auto-segmentation, however, is influenced by the presence of false-positive segmentations, mainly caused by the injected contrast during MRI acquisition. To address this problem and further improve the segmentation performance, a deep-learning and radiomics ensemble classifier was developed to reduce the false-positive rate in segmentations. The proposed model consists of a Siamese network and a radiomic-based support vector machine (SVM) classifier. The 2D-based Siamese network contains a pair of parallel feature extractors with shared weights followed by a single classifier. This architecture is designed to identify the inter-class difference. On the other hand, the SVM model takes the radiomic features extracted from 3D segmentation volumes as the input for twofold classification, either a false-positive segmentation or a true BM. Lastly, the outputs from both models create an ensemble to generate the final label. The performance of the proposed model in the segmented mBMs testing dataset reached the accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under the curve (AUC) of 0.91, 0.96, 0.90 and 0.93, respectively. After integrating the proposed model into the original segmentation platform, the average segmentation false negative rate (FNR) and the false positive over the union (FPoU) were 0.13 and 0.09, respectively, which preserved the initial FNR (0.07) and significantly improved the FPoU (0.55). The proposed method effectively reduced the false-positive rate in the BMs raw segmentations indicating that the integration of the proposed ensemble classifier into the BMs segmentation platform provides a beneficial tool for mBMs SRS management.


Author(s):  
Himadri Mukherjee ◽  
Subhankar Ghosh ◽  
Ankita Dhar ◽  
Sk. Md. Obaidullah ◽  
KC Santosh ◽  
...  

<div><div><div><p>Among radiological imaging data, chest X-rays are of great use in observing COVID-19 mani- festations. For mass screening, using chest X-rays, a computationally efficient AI-driven tool is the must to detect COVID-19 positive cases from non-COVID ones. For this purpose, we proposed a light-weight Convolutional Neural Network (CNN)-tailored shallow architecture that can automatically detect COVID-19 positive cases using chest X-rays, with no false positive. The shallow CNN-tailored architecture was designed with fewer parameters as compared to other deep learning models, which was validated using 130 COVID-19 positive chest X-rays. In this study, in addition to COVID-19 positive cases, another set of non-COVID-19 cases (exactly similar to the size of COVID-19 set) was taken into account, where MERS, SARS, Pneumonia, and healthy chest X-rays were used. In experimental tests, to avoid possible bias, 5-fold cross validation was followed. Using 260 chest X-rays, the proposed model achieved an accuracy of an accuracy of 96.92%, sensitivity of 0.942, where AUC was 0.9869. Further, the reported false positive rate was 0 for 130 COVID-19 positive cases. This stated that proposed tool could possibly be used for mass screening. Note to be confused, it does not include any clinical implications. Using the exact same set of chest X-rays collection, the current results were better than other deep learning models and state-of-the-art works.</p></div></div></div>


Author(s):  
B. Commandre ◽  
D. En-Nejjary ◽  
L. Pibre ◽  
M. Chaumont ◽  
C. Delenne ◽  
...  

Urban growth is an ongoing trend and one of its direct consequences is the development of buried utility networks. Locating these networks is becoming a challenging task. While the labeling of large objects in aerial images is extensively studied in Geosciences, the localization of small objects (smaller than a building) is in counter part less studied and very challenging due to the variance of object colors, cluttered neighborhood, non-uniform background, shadows and aspect ratios. In this paper, we put forward a method for the automatic detection and localization of manhole covers in Very High Resolution (VHR) aerial and remotely sensed images using a Convolutional Neural Network (CNN). Compared to other detection/localization methods for small objects, the proposed approach is more comprehensive as the entire image is processed without prior segmentation. The first experiments using the Prades-Le-Lez and Gigean datasets show that our method is indeed effective as more than 49% of the ground truth database is detected with a precision of 75&amp;thinsp;%. New improvement possibilities are being explored such as using information on the shape of the detected objects and increasing the types of objects to be detected, thus enabling the extraction of more object specific features.


Author(s):  
Himadri Mukherjee ◽  
Subhankar Ghosh ◽  
Ankita Dhar ◽  
Sk. Md. Obaidullah ◽  
KC Santosh ◽  
...  

<div><div><div><p>Among radiological imaging data, chest X-rays are of great use in observing COVID-19 mani- festations. For mass screening, using chest X-rays, a computationally efficient AI-driven tool is the must to detect COVID-19 positive cases from non-COVID ones. For this purpose, we proposed a light-weight Convolutional Neural Network (CNN)-tailored shallow architecture that can automatically detect COVID-19 positive cases using chest X-rays, with no false positive. The shallow CNN-tailored architecture was designed with fewer parameters as compared to other deep learning models, which was validated using 130 COVID-19 positive chest X-rays. In this study, in addition to COVID-19 positive cases, another set of non-COVID-19 cases (exactly similar to the size of COVID-19 set) was taken into account, where MERS, SARS, Pneumonia, and healthy chest X-rays were used. In experimental tests, to avoid possible bias, 5-fold cross validation was followed. Using 260 chest X-rays, the proposed model achieved an accuracy of an accuracy of 96.92%, sensitivity of 0.942, where AUC was 0.9869. Further, the reported false positive rate was 0 for 130 COVID-19 positive cases. This stated that proposed tool could possibly be used for mass screening. Note to be confused, it does not include any clinical implications. Using the exact same set of chest X-rays collection, the current results were better than other deep learning models and state-of-the-art works.</p></div></div></div>


Author(s):  
Thomas P. Trappenberg

This chapter discusses the basic operation of an artificial neural network which is the major paradigm of deep learning. The name derives from an analogy to a biological brain. The discussion begins by outlining the basic operations of neurons in the brain and how these operations are abstracted by simple neuron models. It then builds networks of artificial neurons that constitute much of the recent success of AI. The focus of this chapter is on using such techniques, with subsequent consideration of their theoretical embedding.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Gabriele Valvano ◽  
Gianmarco Santini ◽  
Nicola Martini ◽  
Andrea Ripoli ◽  
Chiara Iacconi ◽  
...  

Cluster of microcalcifications can be an early sign of breast cancer. In this paper, we propose a novel approach based on convolutional neural networks for the detection and segmentation of microcalcification clusters. In this work, we used 283 mammograms to train and validate our model, obtaining an accuracy of 99.99% on microcalcification detection and a false positive rate of 0.005%. Our results show how deep learning could be an effective tool to effectively support radiologists during mammograms examination.


Sign in / Sign up

Export Citation Format

Share Document