scholarly journals In vivo Pharmacodynamic Evaluation of Omadacycline (PTK 0796) against Staphylococcus aureus (SA) in the Murine Thigh Infection Model

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S478-S479 ◽  
Author(s):  
Alexander J Lepak ◽  
Miao Zhao ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R Andes
2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1481
Author(s):  
John Jairo Aguilera-Correa ◽  
Sara Fernández-López ◽  
Iskra Dennisse Cuñas-Figueroa ◽  
Sandra Pérez-Rial ◽  
Hanna-Leena Alakomi ◽  
...  

Staphylococcus aureus is the most common cause of surgical site infections and its treatment is challenging due to the emergence of multi-drug resistant strains such as methicillin-resistant S. aureus (MRSA). Natural berry-derived compounds have shown antimicrobial potential, e.g., ellagitannins such as sanguiin H-6 and lambertianin C, the main phenolic compounds in Rubus seeds, have shown antimicrobial activity. The aim of this study was to evaluate the effect of sanguiin H-6 and lambertianin C fractionated from cloudberry seeds, on the MRSA growth, and as treatment of a MRSA biofilm development in different growth media in vitro and in vivo by using a murine wound infection model where sanguiin H-6 and lambertianin C were used to prevent the MRSA infection. Sanguiin H-6 and lambertianin C inhibited the in vitro biofilm development and growth of MRSA. Furthermore, sanguiin H-6 showed significant anti-MRSA effect in the in vivo wound model. Our study shows the possible use of sanguiin H-6 as a preventive measure in surgical sites to avoid postoperative infections, whilst lambertianin C showed no anti-MRSA activity.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S120-S121
Author(s):  
Sungim Choi ◽  
Taeeun Kim ◽  
Seongman Bae ◽  
Eunmi Yang ◽  
Su-Jin Park ◽  
...  

Abstract Background There is a concern that the vancomycin MIC of methicillin-resistant Staphylococcus aureus (MRSA) could be increased by concomitant colistin administered against multidrug-resistant gram-negative pathogen. Methods We confirmed the molecular genotypes of MRSA blood isolates collected in a tertiary hospital in Seoul, South Korea, and selected representative strains from the community-associated MRSA strains (CA-MRSA, ST72-SCCmec IV) and hospital-acquired MRSA strains (HA-MRSA, ST5-SCCmec II). USA CA-MRSA (USA300, ST8-SCCmec IV) and MRSA standard strain (ATCC 43300, ST39-SCCmec II) were also used for comparison with representative. We identified changes of the vancomycin MIC in MRSA by colistin exposure in a checkerboard assay and performed a time-kill assay to evaluate the combined effect of vancomycin and colistin on MRSA. In addition, we administered vancomycin, colistin, and combination of two antibiotics, respectively, to a neutropenic murine thigh infection model to evaluate the in vivo antagonistic effect of colistin on vancomycin treatment. Results In the checkerboard assay, all 4 MRSA strains showed a tendency for the vancomycin MIC to increase along with increasing concentrations of colistin. However, the time-kill assay showed the antagonism of vancomycin and colistin only against ST5-MRSA, when vancomycin concentration was 2 times the vancomycin MIC (Figure 1). No antagonism was observed in other strains. In the murine thigh infection model of ST5-MRSA, vancomycin monotherapy showed a significant log CFU reduction compared with a combination of vancomycin and colistin at 24 hours, demonstrating the antagonistic effect of vancomycin and colistin combination (Figure 2). Conclusion This study showed that exposure of colistin to certain MRSA strains may reduce the susceptibility to vancomycin. Combination therapy with vancomycin and colistin for MDR pathogens infections might result in treatment failure for concurrent MRSA infection. Disclosures All authors: No reported disclosures.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 606 ◽  
Author(s):  
Maria Mir ◽  
Naveed Ahmed ◽  
Andi Dian Permana ◽  
Aoife Maria Rodgers ◽  
Ryan F. Donnelly ◽  
...  

Methicillin resistant Staphylococcus aureus (MRSA) induced skin infections have become a challenging problem due to the escalating antibiotic resistance. Carvacrol (CAR) has been reported to be effective against MRSA. However, due to its characteristics, CAR exhibits low skin retention. In this study, CAR was formulated into site-specific nanoparticle (NPs) delivery system using poly(ε-caprolactone) (PCL), following incorporation into a hydrogel matrix to facilitate dermal delivery. The release study exhibited significantly higher release of CAR from PCL NPs in the presence of bacterial lipase, highlighting its potential for differential delivery. Moreover, encapsulation of CAR in PCL NPs resulted in a two-fold increase in its anti-MRSA activity. Dermatokinetic studies revealed that the NPs loaded hydrogel was able to enhance skin retention of CAR after 24 h (83.29 ± 3.15%), compared to free CAR-loaded hydrogel (0.85 ± 0.14%). Importantly, this novel approach exhibited effective antimicrobial activity in an ex-vivo skin infection model. Hence, these findings have proven the concept that the loading of CAR into a responsive NPs system can lead to sustained antimicrobial effect at the desired site, and may provide a novel effective approach for treatment of MRSA induced skin infections. However, further studies must be conducted to investigate in-vivo efficacy of the developed system in an appropriate infection model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
W. Mouton ◽  
J. Josse ◽  
C. Jacqueline ◽  
L. Abad ◽  
S. Trouillet-Assant ◽  
...  

AbstractStaphylococcus aureus is the most frequent aetiology of bone and joint infections (BJI) and can cause relapsing and chronic infections. One of the main factors involved in the chronicization of staphylococcal BJIs is the internalization of S. aureus into osteoblasts, the bone-forming cells. Previous studies have shown that S. aureus triggers an impairment of osteoblasts function that could contribute to bone loss. However, these studies focused mainly on the extracellular effects of S. aureus. Our study aimed at understanding the intracellular effects of S. aureus on the early osteoblast differentiation process. In our in vitro model of osteoblast lineage infection, we first observed that internalized S. aureus 8325-4 (a reference lab strain) significantly impacted RUNX2 and COL1A1 expression compared to its non-internalized counterpart 8325-4∆fnbAB (with deletion of fnbA and fnbB). Then, in a murine model of osteomyelitis, we reported no significant effect for S. aureus 8325-4 and 8325-4∆fnbAB on bone parameters at 7 days post-infection whereas S. aureus 8325-4 significantly decreased trabecular bone thickness at 14 days post-infection compared to 8325-4∆fnbAB. When challenged with two clinical isogenic strains isolated from initial and relapse phase of the same BJI, significant impairments of bone parameters were observed for both initial and relapse strain, without differences between the two strains. Finally, in our in vitro osteoblast infection model, both clinical strains impacted alkaline phosphatase activity whereas the expression of bone differentiation genes was significantly decreased only after infection with the relapse strain. Globally, we highlighted that S. aureus internalization into osteoblasts is responsible for an impairment of the early differentiation in vitro and that S. aureus impaired bone parameters in vivo in a strain-dependent manner.


2008 ◽  
Vol 52 (1) ◽  
pp. 244-247 ◽  
Author(s):  
David C. Griffith ◽  
David Rodriguez ◽  
Erik Corcoran ◽  
Michael N. Dudley

ABSTRACT RWJ-54428 (also known as MC-02,479) is a new cephalosporin with promising activity against gram-positive bacteria. The pharmacodynamics (PDs) of RWJ-54428 against Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis were studied in a neutropenic mouse thigh infection model. The RWJ-54428 MICs ranged from 0.25 to 1 mg/liter. Mice with ca. 106 CFU/thigh at the initiation of therapy were treated intraperitoneally with RWJ-54428 at doses that ranged from 3 to 1,200 mg/kg of body weight/day (in 2, 3, 4, 6, or 12 divided doses) for 24 h. The maximal reductions in bacterial counts in thigh tissues at 24 h for the methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and E. faecalis strains were −2.8, −3.8, and −1.7 log10 CFU/thigh, respectively. The percentage of a 24-h dosing interval that the unbound serum RWJ-54428 concentrations exceeded the MIC (fT > MIC) was the pharmacokinetic (PK)-PD parameter that best described the efficacy of RWJ-54428. The fT > MICs for a bacteriostatic effect (no net change in the numbers of CFU/thigh over 24 h) ranged from 14 to 20% for staphylococci and streptococci; for maximal reductions in the numbers of CFU/thigh, the fT > MICs ranged from 22 to 36% for these strains. For E. faecalis, the ranges of fT > MICs for static and maximal effects were 30 to 46% and 55 to 60%, respectively. These data show that treatment with RWJ-54428 results in marked antibacterial effects in vivo, with the PK-PD parameters for efficacy being comparable to those for the efficacy of penicillins and carbapenems active against staphylococci and pneumococci.


2011 ◽  
Vol 56 (1) ◽  
pp. 243-247 ◽  
Author(s):  
Carlos A. Rodriguez ◽  
Maria Agudelo ◽  
Andres F. Zuluaga ◽  
Omar Vesga

ABSTRACTPrevious studies have shown that “bioequivalent” generic products of vancomycin are less effectivein vivoagainstStaphylococcus aureusthan the innovator compound. Considering that suboptimal bactericidal effect has been associated with emergence of resistance, we aimed to assessin vivothe impact of exposure to innovator and generic products of vancomycin onS. aureussusceptibility. A clinical methicillin-resistantS. aureus(MRSA) strain from a liver transplant patient with persistent bacteremia was used for which MIC, minimum bactericidal concentration (MBC), and autolytic properties were determined. Susceptibility was also assessed by determining a population analysis profile (PAP) with vancomycin concentrations from 0 to 5 mg/liter. ICR neutropenic mice were inoculated in each thigh with ∼7.0 log10CFU. Treatment with the different vancomycin products (innovator and three generics; 1,200 mg/kg of body weight/day every 3 h) started 2 h later while the control group received sterile saline. After 24 h, mice were euthanized, and the thigh homogenates were plated. Recovered colonies were reinoculated to new groups of animals, and the exposure-recovery process was repeated until 12 cycles were completed. The evolution of resistance was assessed by PAP after cycles 5, 10, 11, and 12. The initial isolate displayed reduced autolysis and higher resistance frequencies thanS. aureusATCC 29213 but without vancomycin-intermediateS. aureus(VISA) subpopulations. After 12 cycles, innovator vancomycin had significantly reduced resistant subpopulations at 1, 2, and 3 mg/liter, while the generic products had enriched them progressively by orders of magnitude. The great capacity of generic vancomycin to select for less susceptible organisms raises concerns about the role of therapeutic inequivalence of any antimicrobial on the epidemiology of resistance worldwide.


2010 ◽  
Vol 54 (12) ◽  
pp. 5115-5119 ◽  
Author(s):  
Jared L. Crandon ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log10 CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.


2009 ◽  
Vol 53 (4) ◽  
pp. 1463-1467 ◽  
Author(s):  
H. F. Chambers ◽  
L. Basuino ◽  
B. A. Diep ◽  
J. Steenbergen ◽  
S. Zhang ◽  
...  

ABSTRACT Daptomycin is approved for treatment of Staphylococcus aureus bacteremia and right-sided endocarditis. Increases in daptomycin MICs have been associated with failure. A rabbit model of aortic valve endocarditis was used to determine whether MIC correlates with activity in vivo and whether a higher daptomycin dose can improve efficacy. Two related clinical S. aureus strains, one with a daptomycin MIC of 0.5 μg/ml and the other with a MIC of 2 μg/ml, were used to establish aortic valve endocarditis in rabbits. Daptomycin was administered once a day for 4 days at 12 mg/kg of body weight or 18 mg/kg to simulate doses in humans of 6 mg/kg and 10 mg/kg, respectively. Endocardial vegetations, spleens, and kidneys were harvested and quantitatively cultured. The strain with a MIC of 2 μg/ml had a survival advantage over the strain with a MIC of 0.5 μg/ml with >100 times more organisms of the former in endocardial vegetations at the 12-mg/kg dose in a dual-infection model. Both the 12-mg/kg dose and the 18-mg/kg dose completely eradicated the strain with a MIC of 0.5 from vegetations, spleens, and kidneys. The 12-mg/kg dose was ineffective against the strain with a MIC of 2 in vegetations; the 18-mg/kg dose produced a reduction of 3 log10 units in CFU in vegetations compared to the controls, although in no rabbit were organisms completely eliminated. Increasing the dose of daptomycin may improve its efficacy for infections caused by strains with reduced daptomycin susceptibility.


2002 ◽  
Vol 46 (5) ◽  
pp. 1591-1593 ◽  
Author(s):  
N. Asseray ◽  
J. Caillon ◽  
N. Roux ◽  
C. Jacqueline ◽  
R. Bismuth ◽  
...  

ABSTRACT The impact of different types of enzymatic resistance on the in vivo antibacterial activity of aminoglycosides (amikacin, gentamicin, and netilmicin) was studied in the rabbit endocarditis model with four strains of Staphylococcus aureus. Animals were treated in a manner simulating the administration of a single daily human dose. Amikacin had no effect on the three kanamycin-resistant strains despite apparent susceptibility in the disk diffusion test. Gentamicin appears to be the preferable aminoglycoside for treatment of staphylococcal infections.


Sign in / Sign up

Export Citation Format

Share Document