The Fifth Month

Author(s):  
Vanessa LoBue

This chapter describes the development of the fetus in the fifth month of pregnancy. After discovering that her fetus was inconveniently sleeping through an important ultrasound, the author discusses the science of infant sleep, why fetuses and newborns sleep so much, and the potential importance of rapid eye movement (REM) sleep for a fetus’s developing visual system. She then discusses at length various sleep-related issues relevant to infancy, including the controversial issues of co-sleeping (whether parents should do it and why), and an in-depth description of the research on sleep training and its potential short term and long terms effects on infants.

2021 ◽  
Vol 15 ◽  
Author(s):  
Olivier Le Bon

Since the discovery of rapid eye movement (REM) sleep (Aserinsky and Kleitman, 1953), sleep has been described as a succession of cycles of non-REM (NREM) and REM sleep episodes. The hypothesis of short-term REM sleep homeostasis, which is currently the basis of most credible theories on sleep regulation, is built upon a positive correlation between the duration of a REM sleep episode and the duration of the interval until the next REM sleep episode (inter-REM interval): the duration of REM sleep would therefore predict the duration of this interval. However, the high variability of inter-REM intervals, especially in polyphasic sleep, argues against a simple oscillator model. A new “asymmetrical” hypothesis is presented here, where REM sleep episodes only determine the duration of a proportional post-REM refractory period (PRRP), during which REM sleep is forbidden and the only remaining options are isolated NREM episodes or waking. After the PRRP, all three options are available again (NREM, REM, and Wake). I will explain why I think this hypothesis also calls into question the notion of NREM-REM sleep cycles.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 159-159
Author(s):  
Tiana Broen ◽  
Tomiko Yoneda ◽  
Jonathan Rush ◽  
Jamie Knight ◽  
Nathan Lewis ◽  
...  

Abstract Previous cross-sectional research suggests that age-related decreases in Rapid-Eye Movement (REM) sleep may contribute to poorer cognitive functioning (CF); however, few studies have examined the relationship at the intraindividual level by measuring habitual sleep over multiple days. Applying a 14-day daily diary design, the current study examines the dynamic relationship between REM sleep and CF in 69 healthy older adults (M age=70.8 years, SD=3.37; 73.9% female; 66.6% completed at least an undergraduate degree). A Fitbit device provided actigraphy indices of REM sleep (minutes and percentage of total sleep time), while CF was measured four times daily on a smartphone via ambulatory cognitive tests that captured processing speed and working memory. This research addressed the following questions: At the within-person level, are fluctuations in quantity of REM sleep associated with fluctuations in next day cognitive measures across days? Do individuals who spend more time in REM sleep on average, perform better on cognitive tests than adults who spend less time in REM sleep? A series of multilevel models were fit to examine the extent to which each index of sleep accounted for daily fluctuations in performance on next day cognitive tests. Results indicated that during nights when individuals had more REM sleep minutes than was typical, they performed better on the working memory task the next morning (estimate = -.003, SE = .002, p = .02). These results highlight the impact of REM sleep on CF, and further research may allow for targeted interventions for earlier treatment of sleep-related cognitive impairment.


2015 ◽  
Author(s):  
Sudhansu Chokroverty

Recent research has generated an enormous fund of knowledge about the neurobiology of sleep and wakefulness. Sleeping and waking brain circuits can now be studied by sophisticated neuroimaging techniques that map different areas of the brain during different sleep states and stages. Although the exact biologic functions of sleep are not known, sleep is essential, and sleep deprivation leads to impaired attention and decreased performance. Sleep is also believed to have restorative, conservative, adaptive, thermoregulatory, and consolidative functions. This review discusses the physiology of sleep, including its two independent states, rapid eye movement (REM) and non–rapid eye movement (NREM) sleep, as well as functional neuroanatomy, physiologic changes during sleep, and circadian rhythms. The classification and diagnosis of sleep disorders are discussed generally. The diagnosis and treatment of the following disorders are described: obstructive sleep apnea syndrome, narcolepsy-cataplexy sydrome, idiopathic hypersomnia, restless legs syndrome (RLS) and periodic limb movements in sleep, circadian rhythm sleep disorders, insomnias, nocturnal frontal lobe epilepsy, and parasomnias. Sleep-related movement disorders and the relationship between sleep and psychiatric disorders are also discussed. Tables describe behavioral and physiologic characteristics of states of awareness, the international classification of sleep disorders, common sleep complaints, comorbid insomnia disorders, causes of excessive daytime somnolence, laboratory tests to assess sleep disorders, essential diagnostic criteria for RLS and Willis-Ekbom disease, and drug therapy for insomnia. Figures include polysomnographic recording showing wakefulness in an adult; stage 1, 2, and 3 NREM sleep in an adult; REM sleep in an adult; a patient with sleep apnea syndrome; a patient with Cheyne-Stokes breathing; a patient with RLS; and a patient with dream-enacting behavior; schematic sagittal section of the brainstem of the cat; schematic diagram of the McCarley-Hobson model of REM sleep mechanism; the Lu-Saper “flip-flop” model; the Luppi model to explain REM sleep mechanism; and a wrist actigraph from a man with bipolar disorder. This review contains 14 highly rendered figures, 8 tables, 115 references, and 5 MCQs.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Po-Chi Chan ◽  
Hsun-Hua Lee ◽  
Chien-Tai Hong ◽  
Chaur-Jong Hu ◽  
Dean Wu

Rapid eye movement sleep behavior disorder (RBD) is a parasomnia, with abnormal dream-enacting behavior during the rapid eye movement (REM) sleep. RBD is either idiopathic or secondary to other neurologic disorders and medications. Dementia with Lewy bodies (DLB) is the third most common cause of dementia, and the typical clinical presentation is rapidly progressive cognitive impairment. RBD is one of the core features of DLB and may occur either in advance or simultaneously with the onset of DLB. The association between RBD with DLB is widely studied. Evidences suggest that both DLB and RBD are possibly caused by the shared underlying synucleinopathy. This review article discusses history, clinical manifestations, possible pathophysiologies, and treatment of DLB and RBD and provides the latest updates.


1984 ◽  
Vol 56 (1) ◽  
pp. 133-137 ◽  
Author(s):  
D. W. Hudgel ◽  
R. J. Martin ◽  
B. Johnson ◽  
P. Hill

The purposes of this investigation were to describe the changes in 1) dynamic compliance of the lungs, 2) airflow resistance, and 3) breathing pattern that occur during sleep in normal adult humans. Six subjects wore a tightly fitting face mask. Flow and volume were obtained from a pneumotachograph attached to the face mask. Transpulmonary pressure was calculated as the difference between esophageal pressure obtained with a balloon and mask pressure. At least 20 consecutive breaths were analyzed for dynamic compliance, airflow resistance, and breathing pattern during wakefulness, non-rapid-eye-movement stage 2 and rapid-eye-movement (REM) sleep. Dynamic compliance did not change significantly. Airflow resistance increased during sleep; resistance was 3.93 +/- 0.56 cmH2O X 1–1 X s during wakefulness, 7.96 +/- 0.95 in stage 2 sleep, and 8.66 +/- 1.43 in REM sleep (P less than 0.02). By placing a catheter in the retroepiglottic space and thus dividing the airway into upper and lower zones, we found the increase in resistance occurred almost entirely above the larynx. Decreases in tidal volume, minute ventilation, and mean inspiratory flow observed during sleep were not statistically significant.


Sign in / Sign up

Export Citation Format

Share Document