Water and Metal Cations in Solution

Author(s):  
Jean-Pierre Jolivet

Water has an exceptional ability to dissolve minerals. It is safe and chemically stable, and it remains liquid over a wide temperature range. Thus, it is the best solvent and reaction medium for both laboratory and industrial purposes. Water is able to dissolve ionic and ionocovalent solids because of the high polarity of the molecule (dipole moment μ = 1.84 Debye) as well as the high dielectric constant of the liquid (ε = 78.5 at 25°C). This high polarity allows water to exhibit a strong solvating power: that is, the ability to fix onto ions as a result of electrical dipolar interactions. Water is also an ionizing liquid able to polarize an ionocovalent molecule. For example, the solvolysis phenomenon increases the polarization of the HCl molecule in aqueous solution. Finally, owing to the high dielectric constant of the liquid, water is a dissociating solvent that can decrease the electrostatic forces between solvated cations and anions, allowing their dispersion as H+solvated and Cl−solvated through the liquid. (The attractive force F between charges q and q′ separated by the distance r is given by Coulomb’s law, F = qq′/εr2.) These characteristics are rarely found together in common liquids. The dipole moment of the ethanol molecule (μ = 1.69 Debye) is close to that of water, but the dielectric constant of ethanol is much lower (ε = 24.3). Ethanol is a good solvating liquid, but a poor dissociating one; consequently, it is considered a bad solvent of ionic compounds. Dissolution in water of an ionic solid such as sodium chloride is limited to dipolar interactions with Na+ and Cl− ions and their dispersion in the liquid as solvated ions, regardless of the pH of the solution. Cations with higher charge, especially cations of transition metals, retain a fixed number of water molecules, thereby forming a true coordination complex [M(OH2)N]z+ with a well-defined geometry. In addition to the dipolar interactions, water molecules behave as true ligands because they are Lewis bases exerting an electron σ-donor effect on the empty orbitals of the cation.

2020 ◽  
Vol 8 (32) ◽  
pp. 16661-16668
Author(s):  
Huayao Tu ◽  
Shouzhi Wang ◽  
Hehe Jiang ◽  
Zhenyan Liang ◽  
Dong Shi ◽  
...  

The carbon fiber/metal oxide/metal oxynitride layer sandwich structure is constructed in the electrode to form a mini-plate capacitor. High dielectric constant metal oxides act as dielectric to increase their capacitance.


2018 ◽  
Vol 6 (9) ◽  
pp. 2370-2378 ◽  
Author(s):  
Yang Liu ◽  
Cheng Zhang ◽  
Benyuan Huang ◽  
Xu Wang ◽  
Yulong Li ◽  
...  

A novel skin–core structured fluorinated MWCNT nanofiller was prepared to fabricate epoxy composite with broadband high dielectric constant and low dielectric loss.


Author(s):  
Gyuseung Han ◽  
In Won Yeu ◽  
Kun Hee Ye ◽  
Seung-Cheol Lee ◽  
Cheol Seong Hwang ◽  
...  

Through DFT calculations, a Be0.25Mg0.75O superlattice having long apical Be–O bond length is proposed to have a high bandgap (>7.3 eV) and high dielectric constant (∼18) at room temperature and above.


Sign in / Sign up

Export Citation Format

Share Document