Titanium, Manganese, and Zirconium Dioxides

Author(s):  
Jean-Pierre Jolivet

The dioxides of titanium (TiO2), manganese (MnO2), and zirconium (ZrO2) are important materials because of their technological uses. TiO2 is used mainly as white pigment. Because of its semiconducting properties, TiO2, in its nanomaterial form, is also used as an active component of photocells and photocatalysis for self-cleaning glasses and cements . MnO2 is used primarily in electrode materials. ZrO2 is used in refractory ceramics, abrasive materials, and stabilized zirconia as ionic conductive materials stable at high temperature. Many of these properties are, of course, dependent on particle size and shape (§ Chap. 1). Dioxides of other tetravalent elements with interesting properties have been studied elsewhere in this book, especially VO2, which exhibits a metal–isolator transition at 68°C, used, for instance, in optoelectronics (§ 4.1.5), and silica, SiO2 (§ 4.1.4), which is likely the most ubiquitous solid for many applications and uses. Aqueous chemistry is of major interest in synthesizing these oxides in the form of nanoparticles from inorganic salts and under simple, cheap, and envi­ronmental friendly conditions. However, as the tetravalent elements have re­stricted solubility in water (§ 2.2), metal–organic compounds such as titanium and zirconium alkoxides are frequently used in alcoholic solution as precursors for the synthesis of TiO2 and ZrO2 nanoparticles. An overview of the conversion of alkoxides into oxides is indicated about silica formation (§ 4.1.4), and since well-documented works have already been published, these compounds are not considered here. The crystal structures of most MO2 dioxides are of TiO2 rutile type for hexacoordinated cations (e.g., Ti, V, Cr, Mn, Mo, W, Sn, Pb) and CaF2 fluorite type for octacoordinated, larger cations (e.g., Zr, Ce), but polymorphism is common. Some dioxides of elements such as chromium and tin form only one crystal­line phase. So, hydrolysis of SnCl4 or acidification of stannate [Sn(OH)6]2− leads both to the same rutile-type phase, cassiterite, SnO2. Many other dioxides are polymorphic, especially TiO2, which exists in three main crystal phases: anatase, brookite, and rutile; and MnO2, which gives rise to a largely diversified crystal chemistry.

1998 ◽  
Vol 541 ◽  
Author(s):  
S. Tirumala ◽  
S. O. Ryu ◽  
K. B. Lee ◽  
R. Vedula ◽  
S. B. Desu

AbstractThe effect of various electrode materials on the ferroelectric properties of SrBi2Ta2O9 (SBT) thin films has been investigated for non-volatile memory applications. Two sets of electrode structures, viz., Pt-Ir based and Pt-Rh based, were sputter deposited in-situ on Si substrates. SBT thin films were deposited on these electrodes using a metal-organic solution deposition technique followed by a post-deposition anneal at 750 °C in oxygen. Structural characterization revealed a polycrystalline nature with predominant perovskite phase in SBT thin films. Ferroelectric properties were studied in capacitor mode by depositing top electrodes, where the top electrode material is identical to that of the bottom electrode. Extensive analysis of the ferroelectric properties signify the important role played by the electrode material in establishing the device applicability is reported in this work.


The Analyst ◽  
2016 ◽  
Vol 141 (15) ◽  
pp. 4647-4653 ◽  
Author(s):  
Yang Wang ◽  
Huanhuan Chen ◽  
Xiaoya Hu ◽  
Hai Yu

Metal–organic frameworks/titanium dioxide nanocomposites were utilized as novel electrode materials for ultrasensitive chlorogenic acid determination with improved stability.


Author(s):  
Wen-Wei Song ◽  
Bing Wang ◽  
Xiao-Man Cao ◽  
Qiang Chen ◽  
Zhengbo Han

Metal-organic frameworks (MOFs)-derived transition-metal oxides and transition-metal phosphides have great application potential as electrode materials for supercapacitors, owing to the excellent redox activity and high conductivity. However, their electrochemical performances...


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1425
Author(s):  
Di Jiang ◽  
Chuanying Wei ◽  
Ziyang Zhu ◽  
Xiaohui Xu ◽  
Min Lu ◽  
...  

Metal organic frameworks (MOFs) have been rapidly developed in the application of electrode materials due to their controllable morphology and ultra-high porosity. In this research, flower-like layered nickel-based bimetallic MOFs microspheres with different metal central ions were synthesized by solvothermal method. Compared with Ni-MOFs, the optimization of the specific capacitance of NiCo-MOFs and NiMn-MOFs was been confirmed. For example, the specific capacitance of NiCo-MOFs can reach 882 F·g−1 at 0.5 A·g−1 while maintaining satisfactory cycle life (the specific capacity remains 90.1% of the initial value after 3000 charge-discharge cycles at 5 A·g−1). In addition, the NiCo-MOFs//AC HSCs, which are composed of NiCo-MOFs and activated carbon (AC), achieved a maximum energy density of 18.33 Wh·kg−1 at a power density of 400 W·kg−1, and showed satisfactory cycle life (82.4% after 3000 cycles). These outstanding electrochemical properties can be ascribed to the synergistic effect between metal ions, the optimized conductivity, and the unique layered stacked flower structure, which provides a smooth transmission channel for electrons/ions. In addition, this research gives a general method for the application of MOFs in the field of supercapacitors.


2021 ◽  
Author(s):  
Jamie W. Gittins ◽  
Chloe J. Balhatchet ◽  
Yuan Chen ◽  
Cheng Liu ◽  
David G. Madden ◽  
...  

Two-dimensional electrically conductive metal-organic frameworks (MOFs) have emerged as promising model electrodes for use in electric double-layer capacitors (EDLCs). However, a number of fundamental questions about the behaviour of this class of materials in EDLCs remain unanswered, including the effect of the identity of the metal node and organic linker molecule on capacitive performance and the limitations of current conductive MOFs in these devices relative to traditional activated carbon electrode materials. Herein, we address both these questions via a detailed study of the capacitive performance of the framework Cu<sub>3</sub>(HHTP)<sub>2</sub> (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with an acetonitrile-based electrolyte, finding a specific capacitance of 110 – 114 F g<sup>−1</sup> at current densities of 0.04 – 0.05 A g<sup>−1</sup> and a modest rate capability. By, directly comparing its performance with the previously reported analogue, Ni<sub>3</sub>(HITP)<sub>2</sub> (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), we illustrate that capacitive performance is largely independent of the identity of the metal node and organic linker molecule in these nearly isostructural MOFs. Importantly, this result suggests that EDLC performance in general is uniquely defined by the 3D structure of the electrodes and the electrolyte, a significant finding not demonstrated using traditional electrode materials. Finally, we probe the limitations of Cu<sub>3</sub>(HHTP)<sub>2</sub> in EDLCs, finding a limited cell voltage window of 1.3 V and only a modest capacitance retention of 81 % over 30,000 cycles, both significantly lower than state-of-the-art porous carbons. These important insights will aid the design of future conductive MOFs with greater EDLC performances.


Sign in / Sign up

Export Citation Format

Share Document