Gödel’s Proof Based on ω-Consistency

Author(s):  
Raymond M. Smullyan

The proof that we have just given of the incompleteness of Peano Arithmetic was based on the underlying assumption that Peano Arithmetic is correct—i.e., that every sentence provable in P.A. is a true sentence. Gödel’s original incompleteness proof involved a much weaker assumption—that of ω-consistency to which we now turn. We consider an arbitrary axiom system S whose formulas are those of Peano Arithmetic, whose axioms include all those of Groups I and II (or alternatively, any set of axioms for first-order logic with identity such that all logically valid formulas are provable from them), and whose inference rules are modus ponens and generalization. (It is also possible to axiomatize first-order logic in such a way that modus ponens is the only inference rule—cf. Quine [1940].) In place of the axioms of Groups III and IV, however, we can take a completely arbitrary set of axioms. Such a system S is an example of what is termed a first-order theory, and we will consider several such theories other than Peano Arithmetic. (For the more general notion of a first-order theory, the key difference is that we do not necessarily start with + and × as the undefined function symbols, nor do we necessarily take ≤ as the undefined predicate symbol. Arbitrary function symbols and predicate symbols can be taken, however, as the undefined function and predicate symbols—cf. Tarski [1953] for details. However, the only theories (or “systems”, as we will call them) that we will have occasion to consider are those whose formulas are those of P.A.) S is called simply consistent (or just “consistent” for short) if no sentence is both provable and refutable in S.

2015 ◽  
Vol 21 (2) ◽  
pp. 123-163 ◽  
Author(s):  
ROY DYCKHOFF ◽  
SARA NEGRI

AbstractThat every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem’s argument from 1920 for his “Normal Form” theorem. “Geometric” being the infinitary version of “coherent”, it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms.


Author(s):  
Olivia Caramello

This chapter provides the topos-theoretic background necessary for understanding the contents of the book; the presentation is self-contained and only assumes a basic familiarity with the language of category theory. The chapter begins by reviewing the basic theory of Grothendieck toposes, including the fundamental equivalence between geometric morphisms and flat functors. Then it presents the notion of first-order theory and the various deductive systems for fragments of first-order logic that will be considered in the course of the book, notably including that of geometric logic. Further, it discusses categorical semantics, i.e. the interpretation of first-order theories in categories possessing ‘enough’ structure. Lastly, the key concept of syntactic category of a first-order theory is reviewed; this notion will be used in Chapter 2 for constructing classifying toposes of geometric theories.


1982 ◽  
Vol 47 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Carl Morgenstern

In this note we investigate an extension of Peano arithmetic which arises from adjoining generalized quantifiers to first-order logic. Markwald [2] first studied the definability properties of L1, the language of first-order arithmetic, L, with the additional quantifer Ux which denotes “there are infinitely many x such that…. Note that Ux is the same thing as the Keisler quantifier Qx in the ℵ0 interpretation.We consider L2, which is L together with the ℵ0 interpretation of the Magidor-Malitz quantifier Q2xy which denotes “there is an infinite set X such that for distinct x, y ∈ X …”. In [1] Magidor and Malitz presented an axiom system for languages which arise from adding Q2 to a first-order language. They proved that the axioms are valid in every regular interpretation, and, assuming ◊ω1, that the axioms are complete in the ℵ1 interpretation.If we let denote Peano arithmetic in L2 with induction for L2 formulas and the Magidor-Malitz axioms as logical axioms, we show that in we can give a truth definition for first-order Peano arithmetic, . Consequently we can prove in that is Πn sound for every n, thus in we can prove the Paris-Harrington combinatorial principle and the higher-order analogues due to Schlipf.


Author(s):  
Raymond M. Smullyan

We shall now turn to a formal axiom system which we call Peano Arithmetic with Exponentiation and which we abbreviate “P.E.”. We take certain correct formulas which we call axioms and provide two inference rules that enable us to prove new correct formulas from correct formulas already proved. The axioms will be infinite in number, but each axiom will be of one of nineteen easily recognizable forms; these forms are called axiom schemes. It will be convenient to classify these nineteen axiom schemes into four groups (cf. discussion that follows the display of the schemes). The axioms of Groups I and II are the so-called logical axioms and constitute a neat formalization of first-order logic with identity due to Kalish and Montague [1965], which is based on an earlier system due to Tarski [1965]. The axioms of Groups III and IV are the so-called arithmetic axioms. In displaying these axiom schemes, F, G and H are any formulas, vi and vj are any variables, and t is any term. For example, the first scheme L1 means that for any formulas F and G, the formula (F ⊃ (G ⊃ F)) is to be taken as an axiom; axiom scheme L4 means that for any variable Vi and any formulas F and G, the formula . . . (∀vi (F ⊃ G) ⊃ (∀vi (F ⊃ ∀vi G) . . . is to be taken as an axiom.


1997 ◽  
Vol 4 (20) ◽  
Author(s):  
Carsten Butz ◽  
Peter T. Johnstone

By a classifying topos for a first-order theory T, we mean a topos<br />E such that, for any topos F, models of T in F correspond exactly to<br />open geometric morphisms F ! E. We show that not every (infinitary)<br />first-order theory has a classifying topos in this sense, but we<br />characterize those which do by an appropriate `smallness condition',<br />and we show that every Grothendieck topos arises as the classifying<br />topos of such a theory. We also show that every first-order theory<br /> has a conservative extension to one which possesses<br /> a classifying topos, and we obtain a Heyting-valued completeness<br /> theorem for infinitary first-order logic.


1989 ◽  
Vol 54 (1) ◽  
pp. 122-137
Author(s):  
Rami Grossberg

AbstractLet L(Q) be first order logic with Keisler's quantifier, in the λ+ interpretation (= the satisfaction is defined as follows: M ⊨ (Qx)φ(x) means there are λ+ many elements in M satisfying the formula φ(x)).Theorem 1. Let λ be a singular cardinal; assume □λ and GCH. If T is a complete theory in L(Q) of cardinality at most λ, and p is an L(Q) 1-type so that T strongly omits p( = p has no support, to be defined in §1), then T has a model of cardinality λ+ in the λ+ interpretation which omits p.Theorem 2. Let λ be a singular cardinal, and let T be a complete first order theory of cardinality λ at most. Assume □λ and GCH. If Γ is a smallness notion then T has a model of cardinality λ+ such that a formula φ(x) is realized by λ+ elements of M iff φ(x) is not Γ-small. The theorem is proved also when λ is regular assuming λ = λ<λ. It is new when λ is singular or when ∣T∣ = λ is regular.Theorem 3. Let λ be singular. If Con(ZFC + GCH + ∃κ) [κ is a strongly compact cardinal]), then the following is consistent: ZFC + GCH + the conclusions of all above theorems are false.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Rivas-Robledo

Abstract In this article I present HYPER-REF, a model to determine the referent of any given expression in First-Order Logic (FOL). I also explain how this model can be used to determine the referent of a first-order theory such as First-Order Arithmetic (FOA). By reference or referent I mean the non-empty set of objects that the syntactical terms of a well-formed formula (wff) pick out given a particular interpretation of the language. To do so, I will first draw on previous work to make explicit the notion of reference and its hyperintensional features. Then I present HYPER-REF and offer a heuristic method for determining the reference of any formula. Then I discuss some of the benefits and most salient features of HYPER-REF, including some remarks on the nature of self-reference in formal languages.


1982 ◽  
Vol 47 (3) ◽  
pp. 572-586
Author(s):  
John T. Baldwin ◽  
Douglas E. Miller

One of the first results in model theory [12] asserts that a first-order sentence is preserved in extensions if and only if it is equivalent to an existential sentence.In the first section of this paper, we analyze a natural program for extending this result to a class of languages extending first-order logic, notably including L(Q) and L(aa), respectively the languages with the quantifiers “there exist un-countably many” and “for almost all countable subsets”.In the second section we answer a question of Bruce [3] by showing that this program cannot resolve the question for L(Q). We also consider whether the natural class of “generalized Σ-sentences” in L(Q) characterizes the class of sentences preserved in extensions, refuting the relativized version but leaving the unrestricted question open.In the third section we show that the analogous class of L(aa)-sentences preserved in extensions does not include (up to elementary equivalence) all such sentences. This particular candidate class was nominated, rather tentatively, by Bruce [3].In the fourth section we show that under rather general conditions, if L is a countably compact extension of first-order logic and T is an ℵ1-categorical first-order theory, then L is trivial relative to T.


2003 ◽  
Vol 68 (1) ◽  
pp. 319-351 ◽  
Author(s):  
Michael Benedikt ◽  
H. Jerome Keisler

AbstractWe settle a number of questions concerning definability in first order logic with an extra predicate symbol ranging over semi-linear sets. We give new results both on the positive and negative side: we show that in first-order logic one cannot query a semi-linear set as to whether or not it contains a line, or whether or not it contains the line segment between two given points. However, we show that some of these queries become definable if one makes small restrictions on the semi-linear sets considered.


1987 ◽  
Vol 52 (1) ◽  
pp. 165-171 ◽  
Author(s):  
George Boolos ◽  
Vann McGee

The formalism of P(redicate) P(rovability) L(ogic) is the result of adjoining the unary operator □ to first-order logic without identity, constants, or function symbols. The term “provability” indicates that □ is to be “read” as “it is provable in P(eano) A(rithmetic) that…” and that the formulae of predicate provability logic are to be interpreted via formulae of PA as follows.Pr(x), alias Bew(x), is the standard provability predicate of PA. For any formula F of PA, Pr[F] is the formula of PA that expresses the PA-provability of F “of” the values of the variables free in F, i.e., it is the formula of PA with the same free variables as F that expresses the PA-provability of the result of substituting for each variable free in F the numeral for the value of that variable. For the details of the construction of Pr[F], the reader may consult [B2, p. 42]. If F is a sentence of PA, then Pr[F] = Pr(‘F’), the sentence that expresses the PA-provability of F.Let υ1, υ2,… be an enumeration of the variables of PA. An interpretation * of a formula ϕ of PPL is a function which assigns to each predicate symbol P of ϕ a formula P* of the language of arithmetic whose free variables are the first n variables of PA, where n is the degree of P.


Sign in / Sign up

Export Citation Format

Share Document