Definability with a predicate for a semi-linear set

2003 ◽  
Vol 68 (1) ◽  
pp. 319-351 ◽  
Author(s):  
Michael Benedikt ◽  
H. Jerome Keisler

AbstractWe settle a number of questions concerning definability in first order logic with an extra predicate symbol ranging over semi-linear sets. We give new results both on the positive and negative side: we show that in first-order logic one cannot query a semi-linear set as to whether or not it contains a line, or whether or not it contains the line segment between two given points. However, we show that some of these queries become definable if one makes small restrictions on the semi-linear sets considered.

1987 ◽  
Vol 52 (1) ◽  
pp. 165-171 ◽  
Author(s):  
George Boolos ◽  
Vann McGee

The formalism of P(redicate) P(rovability) L(ogic) is the result of adjoining the unary operator □ to first-order logic without identity, constants, or function symbols. The term “provability” indicates that □ is to be “read” as “it is provable in P(eano) A(rithmetic) that…” and that the formulae of predicate provability logic are to be interpreted via formulae of PA as follows.Pr(x), alias Bew(x), is the standard provability predicate of PA. For any formula F of PA, Pr[F] is the formula of PA that expresses the PA-provability of F “of” the values of the variables free in F, i.e., it is the formula of PA with the same free variables as F that expresses the PA-provability of the result of substituting for each variable free in F the numeral for the value of that variable. For the details of the construction of Pr[F], the reader may consult [B2, p. 42]. If F is a sentence of PA, then Pr[F] = Pr(‘F’), the sentence that expresses the PA-provability of F.Let υ1, υ2,… be an enumeration of the variables of PA. An interpretation * of a formula ϕ of PPL is a function which assigns to each predicate symbol P of ϕ a formula P* of the language of arithmetic whose free variables are the first n variables of PA, where n is the degree of P.


Author(s):  
Zeno Swijtink

Beth’s theorem is a central result about definability of non-logical symbols in classical first-order theories. It states that a symbol P is implicitly defined by a theory T if and only if an explicit definition of P in terms of some other expressions of the theory T can be deduced from the theory T. Intuitively, the symbol P is implicitly defined by T if, given the extension of these other symbols, T fixes the extension of the symbol P uniquely. In a precise statement of Beth’s theorem this will be replaced by a condition on the models of T. An explicit definition of a predicate symbol states necessary and sufficient conditions: for example, if P is a one-place predicate symbol, an explicit definition is a sentence of the form (x) (Px ≡φ(x)), where φ(x) is a formula with free variable x in which P does not occur. Thus, Beth’s theorem says something about the expressive power of first-order logic: there is a balance between the syntax (the deducibility of an explicit definition) and the semantics (across models of T the extension of P is uniquely determined by the extension of other symbols). Beth’s definability theorem follows immediately from Craig’s interpolation theorem. For first-order logic with identity, Craig’s theorem says that if φ is deducible from ψ, there is an interpolant θ, a sentence whose non-logical symbols are common to φ and ψ, such that θ is deducible from ψ, while φ is deducible from θ. Craig’s theorem and Beth’s theorem also hold for a number of non-classical logics, such as intuitionistic first-order logic and classical second-order logic, but fail for other logics, such as logics with expressions of infinite length.


Author(s):  
Raymond M. Smullyan

The proof that we have just given of the incompleteness of Peano Arithmetic was based on the underlying assumption that Peano Arithmetic is correct—i.e., that every sentence provable in P.A. is a true sentence. Gödel’s original incompleteness proof involved a much weaker assumption—that of ω-consistency to which we now turn. We consider an arbitrary axiom system S whose formulas are those of Peano Arithmetic, whose axioms include all those of Groups I and II (or alternatively, any set of axioms for first-order logic with identity such that all logically valid formulas are provable from them), and whose inference rules are modus ponens and generalization. (It is also possible to axiomatize first-order logic in such a way that modus ponens is the only inference rule—cf. Quine [1940].) In place of the axioms of Groups III and IV, however, we can take a completely arbitrary set of axioms. Such a system S is an example of what is termed a first-order theory, and we will consider several such theories other than Peano Arithmetic. (For the more general notion of a first-order theory, the key difference is that we do not necessarily start with + and × as the undefined function symbols, nor do we necessarily take ≤ as the undefined predicate symbol. Arbitrary function symbols and predicate symbols can be taken, however, as the undefined function and predicate symbols—cf. Tarski [1953] for details. However, the only theories (or “systems”, as we will call them) that we will have occasion to consider are those whose formulas are those of P.A.) S is called simply consistent (or just “consistent” for short) if no sentence is both provable and refutable in S.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


1991 ◽  
Vol 15 (2) ◽  
pp. 123-138
Author(s):  
Joachim Biskup ◽  
Bernhard Convent

In this paper the relationship between dependency theory and first-order logic is explored in order to show how relational chase procedures (i.e., algorithms to decide inference problems for dependencies) can be interpreted as clever implementations of well known refutation procedures of first-order logic with resolution and paramodulation. On the one hand this alternative interpretation provides a deeper insight into the theoretical foundations of chase procedures, whereas on the other hand it makes available an already well established theory with a great amount of known results and techniques to be used for further investigations of the inference problem for dependencies. Our presentation is a detailed and careful elaboration of an idea formerly outlined by Grant and Jacobs which up to now seems to be disregarded by the database community although it definitely deserves more attention.


2019 ◽  
Vol 29 (8) ◽  
pp. 1311-1344 ◽  
Author(s):  
Lauri T Hella ◽  
Miikka S Vilander

Abstract We propose a new version of formula size game for modal logic. The game characterizes the equivalence of pointed Kripke models up to formulas of given numbers of modal operators and binary connectives. Our game is similar to the well-known Adler–Immerman game. However, due to a crucial difference in the definition of positions of the game, its winning condition is simpler, and the second player does not have a trivial optimal strategy. Thus, unlike the Adler–Immerman game, our game is a genuine two-person game. We illustrate the use of the game by proving a non-elementary succinctness gap between bisimulation invariant first-order logic $\textrm{FO}$ and (basic) modal logic $\textrm{ML}$. We also present a version of the game for the modal $\mu $-calculus $\textrm{L}_\mu $ and show that $\textrm{FO}$ is also non-elementarily more succinct than $\textrm{L}_\mu $.


Sign in / Sign up

Export Citation Format

Share Document