Bursting Cells

Author(s):  
Christof Koch

Some neurons throughout the animal kingdom respond to an intracellular current injection or to an appropriate sensory stimulus with a stereotypical sequence of two to five fast spikes riding upon a slow depolarizing envelope. The entire event, termed a burst, is over within 10-40 msec and is usually terminated by a profound afterhyperpolarization (ΑΗΡ). Such bursting cells are not a random feature of a certain fraction of all cells but can be identified with specific neuronal subpopulations. What are the mechanisms generating this intrinsic firing pattern and what is its meaning? Bursting cells can easily be distinguished from a cell firing at a high maintained frequency by the fact that bursts will persist even at a low firing frequency. As illustrated by the thalamic relay cell of Fig. 9.4, some cells can switch between a mode in which they predominantly respond to stimuli via single, isolated spikes and one in which bursts are common. Because we believe that bursting constitutes a special manner of signaling important information, we devote a single, albeit small chapter to this topic. In the following, we describe a unique class of cells that frequently signal with bursts, and we touch upon the possible biophysical mechanisms that give rise to bursting. We finish this excursion by focussing on a functional study of bursting cells in the electric fish and speculate about the functional relevance of burst firing. Neocortical cells are frequently classified according to their response to sustained current injections. While these distinctions are not all or none, there is broad agreement for three classes: regular spiking, fast spiking, and intrinsically bursting neurons (Connors, Gutnick, and Prince, 1982; McCormick et al., 1985; Connors and Gutnick, 1990; Agmon and Connors, 1992; Baranyi, Szente, and Woody, 1993; Nuńez, Amzica, and Steriade, 1993; Gutnick and Crill, 1995; Gray and McCormick, 1996). Additional cell classes have been identified (e.g., the chattering cells that fire bursts of spikes with interburst intervals ranging from 15 to 50 msec; Gray and McCormick, 1996), but whether or not they occur widely has not yet been settled. The cells of interest to us are the intrinsically bursting cells.

Nature ◽  
1994 ◽  
Vol 369 (6480) ◽  
pp. 479-482 ◽  
Author(s):  
Adam M. Sillito ◽  
Helen E. Jones ◽  
George L. Gerstein ◽  
David C. West

2005 ◽  
Vol 94 (11) ◽  
pp. 1004-1011 ◽  
Author(s):  
Frédéric Adam ◽  
Shilun Zheng ◽  
Nilesh Joshi ◽  
David Kelton ◽  
Amin Sandhu ◽  
...  

SummaryMultimerin 1 (MMRN1) is a large, soluble, polymeric, factor V binding protein and member of the EMILIN protein family.In vivo, MMRN1 is found in platelets, megakaryocytes, endothelium and extracellular matrix fibers, but not in plasma. To address the mechanism of MMRN1 binding to activated platelets and endothelial cells, we investigated the identity of the major MMRN1 receptors on these cells using wild-type and RGE-forms of recombinant MMRN1. Ligand capture, cell adhesion, ELISA and flow cytometry analyses of platelet-MMRN1 binding, indicated that MMRN1 binds to integrins αIIbβ3 and αvβ3. Endothelial cell binding to MMRN1 was predominantly mediated by αvβ3 and did not require the MMRN1 RGD site or cellular activation. Like many other αvβ3 ligands, MMRN1 had the ability to support adhesion of additional cell types, including stimulated neutrophils. Expression studies, using a cell line capable of endothelial-like MMRN1 processing, indicated that MMRN1 adhesion to cellular receptors enhanced its extracellular matrix fiber assembly. These studies implicate integrin-mediated binding in MMRN1 attachment to cells and indicate that MMRN1 is a ligand for αIIbβ3 and αvβ3.


2017 ◽  
Vol 118 ◽  
pp. 102-112 ◽  
Author(s):  
Kim Boddum ◽  
Charlotte Hougaard ◽  
Julie Xiao-Ying Lin ◽  
Nadia Lybøl von Schoubye ◽  
Henrik Sindal Jensen ◽  
...  

2019 ◽  
Vol 30 (5) ◽  
pp. 3030-3043 ◽  
Author(s):  
Runxiang Qiu ◽  
Qiu Runxiang ◽  
Anqi Geng ◽  
Jiancheng Liu ◽  
C Wilson Xu ◽  
...  

Abstract Balanced proliferation and differentiation of neural progenitor cells (NPCs) are critical for brain development, but how the process is regulated and what components of the cell division machinery is involved are not well understood. Here we report that SEPT7, a cell division regulator originally identified in Saccharomyces cerevisiae, interacts with KIF20A in the intercellular bridge of dividing NPCs and plays an essential role in maintaining the proliferative state of NPCs during cortical development. Knockdown of SEPT7 in NPCs results in displacement of KIF20A from the midbody and early neuronal differentiation. NPC-specific inducible knockout of Sept7 causes early cell cycle exit, precocious neuronal differentiation, and ventriculomegaly in the cortex, but surprisingly does not lead to noticeable cytokinesis defect. Our data uncover an interaction of SEPT7 and KIF20A during NPC divisions and demonstrate a crucial role of SEPT7 in cell fate determination. In addition, this study presents a functional approach for identifying additional cell fate regulators of the mammalian brain.


Author(s):  
Bo Wang ◽  
Wei Ke ◽  
Jing Guang ◽  
Guang Chen ◽  
Luping Yin ◽  
...  

1999 ◽  
Vol 82 (5) ◽  
pp. 2476-2489 ◽  
Author(s):  
A. Erisir ◽  
D. Lau ◽  
B. Rudy ◽  
C. S. Leonard

Fast-spiking GABAergic interneurons of the neocortex and hippocampus fire high-frequency trains of brief action potentials with little spike-frequency adaptation. How these striking properties arise is unclear, although recent evidence suggests K+ channels containing Kv3.1-Kv3.2 proteins play an important role. We investigated the role of these channels in the firing properties of fast-spiking neocortical interneurons from mouse somatosensory cortex using a pharmacological and modeling approach. Low tetraethylammonium (TEA) concentrations (≤1 mM), which block only a few known K+channels including Kv3.1-Kv3.2, profoundly impaired action potential repolarization and high-frequency firing. Analysis of the spike trains evoked by steady depolarization revealed that, although TEA had little effect on the initial firing rate, it strongly reduced firing frequency later in the trains. These effects appeared to be specific to Kv3.1 and Kv3.2 channels, because blockade of dendrotoxin-sensitive Kv1 channels and BK Ca2+-activated K+ channels, which also have high TEA sensitivity, produced opposite or no effects. Voltage-clamp experiments confirmed the presence of a Kv3.1-Kv3.2–like current in fast-spiking neurons, but not in other interneurons. Analysis of spike shape changes during the spike trains suggested that Na+ channel inactivation plays a significant role in the firing-rate slowdown produced by TEA, a conclusion that was supported by computer simulations. These findings indicate that the unique properties of Kv3.1-Kv3.2 channels enable sustained high-frequency firing by facilitating the recovery of Na+ channel inactivation and by minimizing the duration of the afterhyperpolarization in neocortical interneurons.


Haematologica ◽  
2019 ◽  
Vol 105 (8) ◽  
pp. 2164-2173
Author(s):  
Zhenyu Hao ◽  
Da-Yun Jin ◽  
Darrel W. Stafford ◽  
Jian-Ke Tie

Author(s):  
Thomas Boraud

This chapter discusses the modalities of information transfer in the nervous system. The nervous system is organised around specialised cells called neurons, which work as integration units that transform all received information into new information. The neurons generate unitary electric pulses of invariant form and duration called action potentials or spikes. Neurons have an intrinsic firing frequency that is their frequency of producing spikes when they are not influenced. The chapter then considers the two major families of neurotransmitters. In general, a neuron releases only one type of neurotransmitter belonging to one of these two families. The first family is that of excitatory neurotransmitters; the neurons that release them are naturally called excitatory neurons. When they bind with postsynaptic receptors, they have a facilitating effect on the production of action potentials. Meanwhile, inhibitory neurons release neurotransmitters whose binding with postsynaptic receptors decreases the discharge frequency of the postsynaptic neuron. The chapter also describes a special family of neurotransmitters: the neuro-modulators.


2005 ◽  
Vol 302 (2) ◽  
pp. 206-220 ◽  
Author(s):  
Fabrice Escaffit ◽  
Nathalie Perreault ◽  
Dominique Jean ◽  
Caroline Francoeur ◽  
Elizabeth Herring ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document