Merchants, Mercenaries and Missionaries, 1220–1300

Author(s):  
David Abulafia

The collapse of empires in the central and eastern Mediterranean was matched in the far west by the disintegration of Almohad power. The caliphs lost their enthusiasm for the extremist doctrines of Almohadism, and were accused of betraying the principles of their movement. Following military defeat at the hands of Christian kings of Spain at Las Navas de Tolosa in 1212 the caliph is said to have been strangled by one of his slaves. The Almohad territories in Spain and Tunisia fell into the hands of a new generation of local kings who only paid lip-service to Almohadism. The Hafsid rulers who gained control of Tunis proclaimed themselves successors to the Almohad caliphate, though more as a way of asserting their legitimacy than out of deep commitment to Almohad beliefs. The Berber Marinids broke Almohad power in Morocco in the mid-thirteenth century, after a long struggle. At the same time the Nasrid dynasty established itself in Granada, where it would last until 1492; it adhered strictly to Sunni Islam, not Almohadism. The thirteenth century also saw a major transformation in the Christian western Mediterranean: Pisa’s rivalry with Genoa for mastery over the waters around Corsica and Sardinia culminated in Pisan defeat at the battle of Meloria and the loss of iron-rich Elba in 1284. Although the Pisans did not yet lose control of the large areas of Sardinia they ruled, and even recovered Elba, a new rival to both Pisa and Genoa emerged, not a maritime republic but a group of cities led by Barcelona and backed by the growing power of the king of Aragon and count of Catalonia, James I ‘the Conqueror’. The Mediterranean vocation of the kings of Aragon was not obvious before the thirteenth century. Lords of a small, mountainous kingdom that only toppled the Muslim emirate of Saragossa in 1118, they dissipated much of their energy in attempts to interfere in Christian Castile and Navarre. But in 1134 King Alfonso ‘the Battler’ of Aragon died, having failed to produce an heir; his brother, a monk, was forced out of his convent in order to breed.

2015 ◽  
Vol 3 (6) ◽  
pp. 3687-3732 ◽  
Author(s):  
U. Dayan ◽  
K. M. Nissen ◽  
U. Ulbrich

Abstract. This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes producing heavy rain storms. It distinguishes the Western and Eastern Mediterranean in order to point at specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger scale circulations. The synoptic systems (tropical and extra-tropical) accounting for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper-level synoptic-scale troughs, and meso-scale convective systems. Under tropical air mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.


2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


2021 ◽  
Author(s):  
Johannes Vogel

<p>The ecosystems of the Mediterranean Basin are particularly prone to climate change and related alterations in climatic anomalies. The seasonal timing of climatic anomalies is crucial for the assessment of the corresponding ecosystem impacts; however, the incorporation of seasonality is neglected in many studies. We quantify ecosystem vulnerability by investigating deviations of the climatic drivers temperature and soil moisture during phases of low ecosystem productivity for each month of the year over the period 1999 – 2019. The fraction of absorbed photosynthetically active radiation (FAPAR) is used as a proxy for ecosystem productivity. Air temperature is obtained from the reanalysis data set ERA5 Land and soil moisture and FAPAR satellite products are retrieved from ESA CCI and Copernicus Global Land Service, respectively. Our results show that Mediterranean ecosystems are vulnerable to three soil moisture regimes during the course of the year. A phase of vulnerability to hot and dry conditions during late spring to midsummer is followed by a period of vulnerability to cold and dry conditions in autumn. The third phase is characterized by cold and wet conditions coinciding with low ecosystem productivity in winter and early spring. These phases illustrate well the shift between a soil moisture-limited regime in summer and an energy-limited regime in winter in the Mediterranean Basin. Notably, the vulnerability to hot and dry conditions during the course of the year is prolonged by several months in the Eastern Mediterranean compared to the Western Mediterranean. Our approach facilitates a better understanding of ecosystem vulnerability at certain stages during the year and is easily transferable to other study areas and ecoclimatological variables.</p>


2015 ◽  
Vol 15 (11) ◽  
pp. 2525-2544 ◽  
Author(s):  
U. Dayan ◽  
K. Nissen ◽  
U. Ulbrich

Abstract. This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes that produce heavy rain storms. It distinguishes the western and eastern Mediterranean in order to point out specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger-scale circulations. The synoptic systems (tropical and extratropical) that account for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper synoptic-scale-level troughs, and mesoscale convective systems. Under tropical air-mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.


2018 ◽  
Vol 46 (1) ◽  
pp. 261-289 ◽  
Author(s):  
Leigh Royden ◽  
Claudio Faccenna

The Late Cenozoic tectonic evolution of the Mediterranean region, which is sandwiched between the converging African and European continents, is dominated by the process of subduction orogeny. Subduction orogeny occurs where localized subduction, driven by negative slab buoyancy, is more rapid than the convergence rate of the bounding plates; it is commonly developed in zones of early or incomplete continental collision. Subduction orogens can be distinguished from collisional orogens on the basis of driving mechanism, tectonic setting, and geologic expression. Three distinct Late Cenozoic subduction orogens can be identified in the Mediterranean region, making up the Western Mediterranean (Apennine, external Betic, Maghebride, Rif), Central Mediterranean (Carpathian), and Eastern Mediterranean (southern Dinaride, external Hellenide, external Tauride) Arcs. The Late Cenozoic evolution of these orogens, described in this article, is best understood in light of the processes that govern subduction orogeny and depends strongly on the buoyancy of the locally subducting lithosphere; it is thus strongly related to paleogeography. Because the slow (4–10 mm/yr) convergence rate between Africa and Eurasia has preserved the early collisional environment, and associated tectonism, for tens of millions of years, the Mediterranean region provides an excellent opportunity to elucidate the dynamic and kinematic processes of subduction orogeny and to better understand how these processes operate in other orogenic systems.


2021 ◽  
Author(s):  
Johannes Vogel ◽  
Eva Paton ◽  
Valentin Aich

Abstract. Mediterranean ecosystems are particularly vulnerable to climate change and the associated increase in climate extremes. This study investigates extreme ecosystem responses evoked by climatic drivers in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations, as the seasonal timing of climatic anomalies is considered essential for impact and vulnerability assessment. A bivariate vulnerability analysis is performed for each month of the year to quantify which combinations of the drivers temperature (obtained from ER5 Land) and soil moisture (obtained from ESA CCI and ERA5 Land) lead to extreme reductions of ecosystem productivity using the fraction of absorbed photosynthetically active radiation (FAPAR; obtained from Copernicus Global Land Service) as a proxy. The bivariate analysis clearly showed that, in many cases, it is not just one but a combination of both drivers that causes ecosystem vulnerability. The overall pattern shows that Mediterranean ecosystems are prone to three soil moisture regimes during the yearly cycle: They are vulnerable to hot and dry conditions from May to July, to cold and dry conditions from August to October, and to cold conditions from November to April, illustrating the shift from a soil moisture-limited regime in summer to an energy-limited regime in winter. In late spring, a month with significant vulnerability to hot conditions only often precedes the next stage of vulnerability to both hot and dry conditions, suggesting that high temperatures lead to critically low soil moisture levels with a certain time lag. In the eastern Mediterranean, the period of vulnerability to hot and dry conditions within the year is much longer than in the western Mediterranean. Our results show that it is crucial to account for both spatial and temporal variability to adequately assess ecosystem vulnerability. The seasonal vulnerability approach presented in this study helps to provide detailed insights regarding the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.


2006 ◽  
Vol 7 ◽  
pp. 45-49 ◽  
Author(s):  
J. A. Guijarro ◽  
A. Jansà ◽  
J. Campins

Abstract. Interannual variability and trends of the surface geostrophic cyclonic circulation and cyclone frequency in Western and Eastern Mediterranean areas are analyzed, based on a cyclone data base derived from the ERA-40 ECWMF reanalysis (within the MEDEX project tasks), spanning from September/1957 to August/2002. In this 45 years, the cyclonic circulation show a significant decrease in the Western Mediterranean, mostly in winter and spring, and an increase in the Eastern, mainly due to the summer and autumn increase in the frequency of thermal lows.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1218
Author(s):  
Veronika N. Maslova ◽  
Elena N. Voskresenskaya ◽  
Andrey S. Lubkov ◽  
Alexander V. Yurovsky

Our understanding of the time variability of intense cyclones in the Mediterranean region is still lacking despite its importance for the long-term forecast of climate anomalies. This study examines the month-to-month variability and predictability of cyclones, the intensity of which exceeded the 75th percentile (intense cyclones) and the 95th percentile (extreme cyclones), over the Western and Eastern Mediterranean. The locations of cyclones were obtained by applying the method of M. Yu. Bardin on the 6-hourly 1000 hPa geopotential height data from the NCEP/NCAR reanalysis for the period 1951–2017 (67 years). It was shown that annual frequencies of cyclones were higher in the Western Mediterranean due to the contribution of spring and autumn; monthly averages were higher in the Eastern Mediterranean in December/January–March for intense/extreme cyclones. In the context of global warming, no linear trends significant at the 90% confidence level were found in the variability of intense and extreme cyclones, except for a positive trend in autumn extreme cyclones over the Eastern Mediterranean. The time series of cyclones in both parts of the Mediterranean were characterized by a pronounced interannual variability with a noticeable decadal modulation. According to spectral analysis, these interannual periods were multiples of 2–3 years corresponding to the main global teleconnection patterns. Seasonally, the most energy was concentrated in winter spectra; spring and autumn spectra had lower comparable magnitudes. The correlation analysis between the frequency of cyclones and the indices of the main atmospheric patterns showed that the main synchronous patterns for intense and extreme Mediterranean cyclones in September–April were the Mediterranean Oscillation (with the opposite signs for the Western and Eastern Mediterranean), Scandinavia pattern (positive correlation), and East Atlantic Oscillation (negative correlation). Additional important synchronous teleconnection patterns for some months were the Arctic Oscillation and East Atlantic/West Russia pattern for the Western Mediterranean, and the Polar/Eurasia pattern and Tropical Northern Hemisphere pattern for the Eastern Mediterranean. The outcome of this paper was the use of an artificial neural network model with inputs of global teleconnection indices both in the atmosphere and ocean to describe the temporal variability of the frequency of intense cyclones in the Western and Eastern Mediterranean. The predictability of intense cyclones was shown with the possibility of forecasts with a lead time of 0, 2, 4, and 6 months for the Western Mediterranean in October, January, February, April, and May, and for the Eastern Mediterranean in January, February, March, April, and May. One of the applications of this model may be in forecasting the evolution of the monthly frequency of cyclones with a lead time of 2 to 6 months.


2021 ◽  
Vol 18 (22) ◽  
pp. 5903-5927
Author(s):  
Johannes Vogel ◽  
Eva Paton ◽  
Valentin Aich

Abstract. Mediterranean ecosystems are particularly vulnerable to climate change and the associated increase in climate anomalies. This study investigates extreme ecosystem responses evoked by climatic drivers in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations as the seasonal timing of climatic anomalies is considered essential for impact and vulnerability assessment. A bivariate vulnerability analysis is performed for each month of the year to quantify which combinations of the drivers temperature (obtained from ERA5-Land) and soil moisture (obtained from ESA CCI and ERA5-Land) lead to extreme reductions in ecosystem productivity using the fraction of absorbed photosynthetically active radiation (FAPAR; obtained from the Copernicus Global Land Service) as a proxy. The bivariate analysis clearly showed that, in many cases, it is not just one but a combination of both drivers that causes ecosystem vulnerability. The overall pattern shows that Mediterranean ecosystems are prone to three soil moisture regimes during the yearly cycle: they are vulnerable to hot and dry conditions from May to July, to cold and dry conditions from August to October, and to cold conditions from November to April, illustrating the shift from a soil-moisture-limited regime in summer to an energy-limited regime in winter. In late spring, a month with significant vulnerability to hot conditions only often precedes the next stage of vulnerability to both hot and dry conditions, suggesting that high temperatures lead to critically low soil moisture levels with a certain time lag. In the eastern Mediterranean, the period of vulnerability to hot and dry conditions within the year is much longer than in the western Mediterranean. Our results show that it is crucial to account for both spatial and temporal variability to adequately assess ecosystem vulnerability. The seasonal vulnerability approach presented in this study helps to provide detailed insights regarding the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.


2008 ◽  
Vol 17 ◽  
pp. 87-91 ◽  
Author(s):  
A. V. Mehta ◽  
S. Yang

Abstract. Climatological features of mesoscale rain activities over the Mediterranean region between 5° W–40° E and 28° N–48° N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25°×0.25° spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3–5 mm day−1) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (~0.5 mm day−1). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November–December. Over the Mediterranean Sea, an average rainrate of ~1–2 mm day−1 is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.


Sign in / Sign up

Export Citation Format

Share Document