scholarly journals Precipitation climatology over Mediterranean Basin from ten years of TRMM measurements

2008 ◽  
Vol 17 ◽  
pp. 87-91 ◽  
Author(s):  
A. V. Mehta ◽  
S. Yang

Abstract. Climatological features of mesoscale rain activities over the Mediterranean region between 5° W–40° E and 28° N–48° N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25°×0.25° spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3–5 mm day−1) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (~0.5 mm day−1). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November–December. Over the Mediterranean Sea, an average rainrate of ~1–2 mm day−1 is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.

2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


2018 ◽  
Vol 46 (1) ◽  
pp. 261-289 ◽  
Author(s):  
Leigh Royden ◽  
Claudio Faccenna

The Late Cenozoic tectonic evolution of the Mediterranean region, which is sandwiched between the converging African and European continents, is dominated by the process of subduction orogeny. Subduction orogeny occurs where localized subduction, driven by negative slab buoyancy, is more rapid than the convergence rate of the bounding plates; it is commonly developed in zones of early or incomplete continental collision. Subduction orogens can be distinguished from collisional orogens on the basis of driving mechanism, tectonic setting, and geologic expression. Three distinct Late Cenozoic subduction orogens can be identified in the Mediterranean region, making up the Western Mediterranean (Apennine, external Betic, Maghebride, Rif), Central Mediterranean (Carpathian), and Eastern Mediterranean (southern Dinaride, external Hellenide, external Tauride) Arcs. The Late Cenozoic evolution of these orogens, described in this article, is best understood in light of the processes that govern subduction orogeny and depends strongly on the buoyancy of the locally subducting lithosphere; it is thus strongly related to paleogeography. Because the slow (4–10 mm/yr) convergence rate between Africa and Eurasia has preserved the early collisional environment, and associated tectonism, for tens of millions of years, the Mediterranean region provides an excellent opportunity to elucidate the dynamic and kinematic processes of subduction orogeny and to better understand how these processes operate in other orogenic systems.


Author(s):  
Bernhard Hausdorf ◽  
Sonja Bamberger ◽  
Frank Walther

Abstract We report an unusual biogeographical disjunction between the western and the eastern Mediterranean region. Cornu (Gastropoda: Helicidae) is a western Mediterranean land snail genus. It includes Cornu (Cornu) aspersum, which originated in north-western Africa and was distributed by humans for food or accidentally, first throughout the Mediterranean region and, subsequently, to all continents except Antarctica. It also includes three species belonging to the subgenus Erctella, which are all endemic to Sicily. We discovered a new species of Cornu on the Greek island of Crete. The morphological and molecular genetic analyses showed that the species from Crete is a disjunct representative of the subgenus Erctella. We hypothesize that the disjunction originated by a long-distance dispersal event of the ancestors of the Cretan species from Sicily by birds or by sea currents, perhaps facilitated by a tsunami or a similar event. The Cretan lineage separated from the Sicilian species in the Late Miocene or Early Pliocene. This divergence time is compatible with the hypothesis that the ancestor of Cornu cretense sp. nov. was washed from Sicily to Crete by the Zanclean flood that refilled the Mediterranean basin after it had dried up during the Messinian salinity crisis.


Author(s):  
Andrew Harding ◽  
Jean Palutikof

The Mediterranean region has a highly distinctive climate due to its position between 30 and 45°N to the west of the Euro-Asian landmass. With respect to the global atmospheric system, it lies between subtropical high pressure systems to the south, and westerly wind belts to the north. In winter, as these systems move equatorward, the Mediterranean basin lies under the influence of, and is exposed to, the westerly wind belt, and the weather is wet and mild. In the summer, as shown in Figure 3.1, the Mediterranean lies under subtropical high pressure systems, and conditions are hot and dry, with an absolute drought that may persist for more than two or three months in drier regions. Climates such as this are relatively rare, and the Mediterranean shares its winter wet/summer dry conditions with locations as distant as central Chile, the southern tip of Cape Province in South Africa, southwest Australia in the Southern Hemisphere, and central California in the Northern Hemisphere. All have in common their mid-latitude position, between subtropical high pressure systems and westerly wind belts. They all lie on the westerly side of continents so that, in winter, when the westerly wind belts dominate over their locations, they are exposed to rain-bearing winds. In the Köppen classification (Köppen 1936), these climates are known as Mediterranean (Type Cs, which is subdivided in turn into maritime Csb and continental Csa). The influence of the Mediterranean Sea means that the Mediterranean-type climate of the region extends much further into the continental landmass than elsewhere, and is not restricted to a narrow ocean-facing strip. Nevertheless, within the Mediterranean region climate is modified by position and topographic influences can be important. The proximity of the western Mediterranean to the Atlantic Ocean gives its climate a maritime flavour, with higher rainfall and milder temperatures throughout the year. The eastern Mediterranean lies closer to the truly continental influences of central Europe and Asia. Its climate is drier, and temperatures are hotter in summer and colder in winter than in the west. Annual rainfall is typically around 750 mm in Rome, but only around 400 mm in Athens.


2011 ◽  
Vol 70 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Fernando Gómez

Diversity and Distribution of the DinoflagellatesBrachidinium, AsterodiniumandMicroceratium(Brachidiniales, Dinophyceae) in the open Mediterranean SeaBrachidiniacean dinoflagellates have been investigated in the open waters of the Mediterranean Sea, along a transect from the south of France to the south of Cyprus (20 June-18 July 2008).BrachidiniumandKarenia papilionaceaoften co-occurred,B. capitatumpredominating in the surface waters. The highest abundance ofBrachidiniumwere found in the upper 25min the western Mediterranean with amaximum (24 cells L-1) at a depth of 5 m in the Balearic Sea.Asterodinium(up to 4 cells L-1) was recorded below of deep chlorophyll maxima. The genusMicroceratium, only known from the tropical Indo-Pacific region, is reported for the first time in the Mediterranean Sea.Microceratiumwas found below 100min the eastern Mediterranean Sea, with the highest abundance of 8 cells L-1at 125 m depth, in the Levantine Basin. This study also illustrates for the first time specimens under the division ofBrachidiniumandMicroceratium. This first occurrence ofMicroceratiumin the Mediterranean Sea should be considered an indicator of climate warming. However, it should not be considered a non-indigenous taxon.Microceratiumis the ‘tropical morphotype’, the adaptation of a local species (a life stage ofKarenia - Brachidinium - Asterodinium) to the tropical environmental conditions that prevail in summer in the open Mediterranean Sea.


2011 ◽  
Vol 8 (3) ◽  
pp. 827-840 ◽  
Author(s):  
M. Le Moal ◽  
H. Collin ◽  
I. C. Biegala

Abstract. The Mediterranean Sea is one of the most oligotrophic marine areas on earth where nitrogen fixation has formally believed to play an important role in carbon and nitrogen fluxes. Although this view is under debate, the diazotrophs responsible for this activity have still not been investigated in the open sea. In this study, we characterised the surface distribution and species richness of unicellular and filamentous diazotrophs across the Mediterranean Sea by combining microscopic counts with size fractionated in situ hybridization (TSA-FISH), and 16S rDNA and nifH genes phylogenies. These genetic analyses were possible owing to the development of a new PCR protocol adapted to scarce microorganisms that can detect as few as 1 cell ml−1 in cultures. Low concentrations of diazotrophic cyanobacteria were detected and this community was dominated at 99.9% by picoplankton hybridized to the Nitro821 probe, specific for unicellular diazotrophic cyanobacteria (UCYN). Among filamentous cyanobacteria only 0.02 filament ml−1 of Richelia were detected in the eastern basin, while small (0.7–1.5 μm) and large (2.5–3.2 μm) Nitro821-targeted cells were recovered at all stations with a mean concentration of 3.5 cell ml−1. The affiliation of the small Nitro821-targeted cells to UCYN-A was confirmed by 16S and nifH phylogenies in the western Mediterranean Sea. In the central and the eastern Mediterranean Sea no 16S rDNA and nifH sequence from UCYN was obtained as cells concentration were close to, or below PCR detection limit. Bradyrhizobium sequences dominated nifH clone libraries from picoplanktonic size fractions. A few sequences of γ-proteobacteria were also detected in the central Mediterranean Sea. While low phosphate and iron concentrations could explain the absence of Trichodesmium sp., the factors that prevent the development of UCYN-B and C remain unknown. We also propose that the dominating picoplankters probably developed specific strategies, such as associations with protists or particles, and/or photosynthetic activity, to acquire carbon for sustaining diazotrophy.


2013 ◽  
Vol 10 (6) ◽  
pp. 2399-2432 ◽  
Author(s):  
D. Hainbucher ◽  
A. Rubino ◽  
V. Cardin ◽  
T. Tanhua ◽  
K. Schroeder ◽  
...  

Abstract. Hydrography and large scale circulation observed in the Mediterranean Sea during the M84/3 and P414 cruises (April and June 2011, respectively) are presented. In contrast to most of the recent expeditions, which were limited to special areas of the basin, these two cruises, especially the M84/3, offered the opportunity of delineating a quasi-synoptic picture of the distribution of the relevant physical parameters through the whole Mediterranean. A section was observed from the Lebanese coast up to the Strait of Gibraltar. The focus of our analysis are the water mass properties, also in the context of the recently observed variability, and a comparison between the velocity fields observed using a vessel-mounted ADCP and those calculated from the observed density fields. Overall, a distribution of temperature, salinity, and geostrophic velocities emerges, which seems far from that observed before the beginning of the so-called "Eastern Mediterranean Transient", a major climatic shift in the hydrography and circulation of the Mediterranean Sea occurred at the end of 1980s. Here, our focus is a discussion of the observed water mass properties analysed through T–S diagrams and through an Optimum Multiparameter (OMP) analysis. Additionally, ADCP velocities are compared to geostrophic calculations.


2020 ◽  
Vol 8 ◽  
Author(s):  
Sabrina Lo Brutto ◽  
Davide Iaciofano

A survey has been carried out at four Israeli rocky sites to evaluate the diversity of the amphipod fauna on various hard substrates, still scarcely monitored, as potential pabulum for amphipod crustacean species. A survey of shallow rocky reefs along the Mediterranean coast of Israel recovered 28 species and integrated the Amphipoda checklist for the country ofIsrael with 12 newly-recorded species. Such renewed national list includes Maera schieckei Karaman & Ruffo, 1971, a rare species endemic to the Mediterranean Sea, recorded here for the first time from the southern Levant Basin. The species, described from specimens collected in the Tyrrhenian Sea in 1970, has been only recorded eight times within the whole Mediterranean Sea. A revision of the bibliography on the distribution and ecology of M. schieckei showed that, although mentioned only for the western Mediterranean basin by some authors, it is listed in the checklist of amphipods of the Aegean Sea and neighbouring seas and has been found in the eastern Mediterranean basin since 1978. Maera schieckei was rarely found in the Mediterranean, one of the most studied marine biogeographic region as concerns the amphipod fauna; and the species seems to prefer bays or gulf areas. The role of updating and monitoring faunal composition should be re-evaluated.


2010 ◽  
Vol 11 (2) ◽  
pp. 381 ◽  
Author(s):  
A. ZENETOS ◽  
S. GOFAS ◽  
M. VERLAQUE ◽  
M.E. CINAR ◽  
J.E. GARCIA RASO ◽  
...  

The state-of-art on alien species in the Mediterranean Sea is presented, making distinctions among the four subregions defined in the EU Marine Strategy Framework Directive: (i) the Western Mediterranean Sea (WMED); (ii) the Central Mediterranean Sea (CMED); (iii) the Adriatic Sea (ADRIA); and (iv) the Eastern Mediterranean Sea (EMED). The updated checklist (December 2010) of marine alien species within each subregion, along with their acclimatization status and origin, is provided. A total of 955 alien species is known in the Mediterranean, the vast majority of them having being introduced in the EMED (718), less in the WMED (328) and CMED (267) and least in the Adriatic (171). Of these, 535 species (56%) are established in at least one area.Despite the collective effort of experts who attempted in this work, the number of introduced species remains probably underestimated. Excluding microalgae, for which knowledge is still insufficient, aliens have increased the total species richness of the Mediterranean Sea by 5.9%. This figure should not be directly read as an indication of higher biodiversity, as spreading of so many aliens within the basin is possibly causing biotic homogenization. Thermophilic species, i.e. Indo-Pacific, Indian Ocean, Red Sea, Tropical Atlantic, Tropical Pacific, and circum(sub)tropical, account for 88.4% of the introduced species in the EMED, 72.8% in the CMED, 59.3% in the WMED and 56.1% in the Adriatic. Cold water species, i.e. circumboreal, N Atlantic, and N Pacific, make up a small percentage of the introduced species, ranging between 4.2% and 21.6% and being more numerous in the Adriatic and less so in the EMED.Species that are classified as invasive or potentially invasive are 134 in the whole of the Mediterranean: 108 are present in the EMED, 76 in the CMED, 53 in the Adriatic and 64 in the WMED. The WMED hosts most invasive macrophytes, whereas the EMED has the lion’s share in polychaetes, crustaceans, molluscs and fish.


2016 ◽  
Vol 17 (2) ◽  
pp. 608 ◽  
Author(s):  
T. DAILIANIS ◽  
O. AKYOL ◽  
N. BABALI ◽  
M. BARICHE ◽  
F. CROCETTA ◽  
...  

This contribution forms part of a series of collective articles published regularly in Mediterranean Marine Science that report on new biodiversity records from the Mediterranean basin. The current article presents 51 geographically distinct records for 21 taxa belonging to 6 Phyla, extending from the western Mediterranean to the Levantine. The new records, per country, are as follows: Spain: the cryptogenic calcareous sponge Paraleucilla magna is reported from a new location in the Alicante region. Algeria: the rare Atlanto-Mediterranean bivalve Cardium indicum is reported from Annaba. Tunisia: new distribution records for the Indo-Pacific lionfish Pterois miles from Zembra Island and Cape Bon. Italy: the ark clam Anadara transversa is reported from mussel cultures in the Gulf of Naples, while the amphipod Caprella scaura and the isopods Paracerceis sculpta and Paranthura japonica are reported as associated to the –also allochthonous–bryozoan Amathia verticillata in the Adriatic Sea; in the latter region, the cosmopolitan Atlantic tripletail Lobotes surinamensisis also reported, a rare finding for the Mediterranean. Slovenia: a new record of the non-indigenous nudibranch Polycera hedgpethi in the Adriatic. Greece: several new reports of the introduced scleractinian Oculina patagonica, the fangtooth moray Enchelycore anatina, the blunthead puffer Sphoeroides pachygaster (all Atlantic), and the lionfish Pterois miles (Indo-Pacific) suggest their ongoing establishment in the Aegean Sea; the deepest bathymetric record of the invasive alga Caulerpa cylindracea in the Mediterranean Sea is also registered in the Kyklades, at depths exceeding 70 m. Turkey: new distribution records for two non indigenous crustaceans, the blue crab Callinectes sapidus (Atlantic origin) and the moon crab Matuta victor (Indo-Pacific origin) from the Bay of Izmir and Antalya, respectively; in the latter region, the Red Sea goatfish Parupeneus forsskali, is also reported. Lebanon: an array of records of 5 alien and one native Mediterranean species is reported by citizen-scientists; the Pacific jellyfish Phyllorhiza punctata and the Indo-Pacific teleosteans Tylerius spinosissimus, Ostracion cubicus, and Lutjanus argentimaculatus are reported from the Lebanese coast, the latter notably being the second record for the species in the Mediterranean Sea since 1977; the native sand snake-eel Ophisurus serpens, rare in the eastern Mediterranean, is reported for the first time from Lebanon, this being its easternmost distribution range; finally, a substantial number of sightings of the lionfish Pterois miles further confirm the current establishment of this lessepsian species in the Levantine.


Sign in / Sign up

Export Citation Format

Share Document