Gas Laws

Author(s):  
Christopher O. Oriakhi

Volumes and densities of gases vary significantly with changes in pressure and temperature. This means that measurements of the volumes of gases will likely vary from one laboratory to another. To correct for this, scientists have adopted a set of standard conditions of temperature and pressure (STP) as a reference point in reporting all measurements involving gases. They are 0°C (or 273 K) and 760mmHg or 1 atm (or 1.013×105 N m−2 in S.I. units). Therefore standard temperature and pressure, as used in calculations involving gases, are defined as 0°C (or 273 K) and 1 atmosphere (or 760 torr). (Note: For calculations involving the gas laws, temperature must be in K.) Boyle’s law states that the volume of a given mass of gas at constant temperature is inversely proportional to the pressure. The law can be expressed in mathematical terms: V α 1/P or PV = k at constant n and T Since P×V = constant, problems dealing with P–V relationships can be solved by using the simplified equation: P1V1 = P2V2 Here P1, V1 represent one set of conditions and P2, V2 represent another set of conditions for a given mass of gas. Charles’s law states that the volume of a given mass of gas is directly proportional to its absolute temperature. So if the absolute temperature is doubled, say from 300 K to 600 K, the volume of the gas will also double. A plot of the volume of a gas versus its temperature (K) gives a straight line. A notable feature of such a plot is that the volume of all gases extrapolates to zero at the same temperature, −273.2◦C. This point is defined as 0 K, and is called absolute zero. Thus, the relationship between the Kelvin and Celsius temperature scales is given as: K = 0°C + 273. Scientists believe that the absolute zero temperature, 0 K, cannot be attained, although some laboratories have reported producing 0.0001 K.

1973 ◽  
Vol 95 (2) ◽  
pp. 236-241
Author(s):  
T. F. Ford ◽  
C. R. Singleterry

Many relationships between viscosity or its reciprocal, fluidity, and temperature have been proposed for liquids. None except the empirically modified ASTM chart have proven satisfactory over extended temperature ranges. We here note that by plotting the kinematic fluidity (φkin) against the square of the absolute temperature (deg K2) we obtain linear relationships for a wide variety of organic liquids at kinematic viscosities less than about 1.67 centistokes (or fluidities above about 0.60 reciprocal centistokes). The generality of the relationship appears to justify the use of the equation, φkin=a+bT2, as an interpolation formula for organic liquids in the low viscosity region.


According to the Stefan-Boltzmann law, the radiation emitted by a full radiator is surroundings at a temperature of absolute zero is proportional to the fourth power of the absolute temperature of the radiator, or R = σθ 4 , where R = radiation in ergs per cm 2 . per sec., θ = absolute temperature of radiator, σ = radiation constant. If the radiator is in surroundings at absolute temperature θ 1 , which are themselves full radiators, then R´ = R θ -R θ 1 = σ( θ 4 - θ 1 4 ), where R´ is the net radiation. The first important determination of the radiation constant is due to Kurlbaum, who obtained a value 5·33 × 10 -5 erg/sec. cm. 2 deg. 4 , recently corrected to 5·45 × 10 -5 erg/sec. cm. 2 deg. 4 Later investigations give results varying considerably from Kurlbaum's and from one another, and, on the whole, they indicate that Kurlbaum's value is too low. Some determinations are given in the following table:—


According to stefan's law the rate of radiation of energy from a full radiator in surroundings at a temperature of absolute zero is σ θ 4 ergs per cm. 2 per sec., where θ is the absolute temperature of the radiator. If the radiator be in surroundings which are themselves full radiators, but at absolute temperature θ 1 , the rate of loss of energy by radiation is taken to be σ( θ 4 - θ 1 4 ). The classical determination of the constant σ is due to Kurlbaum, who used a surface bolometer with a platinum-black surface. The rise of temperature of the bolometer when exposed to the radiation from an approximately full radiator or "black body" was observed. The radiation was then cut off, and an equal rise of temperature was produced by increasing the main current in the bolometer. It was assumed that the energy received per second from the radiator in the first case was equal to the energy received per second from the increase of current in the second ease. The resulting value of σ was 5·33 x 10 -5 ergs per cm. 2 per sec. per deg. 4 , or 5·33 x 10 -12 watts per cm. 2 per deg. 4 .


2015 ◽  
Vol 7 (1) ◽  
pp. 1336-1345
Author(s):  
Rakesh Teja Konduru

Influenced with symmetry of entropy and time in nature, we tried to invoke relation between entropy and time in space-time with new dimension. And also provided how Hubble’s constant related with entropy of universe. Discussed about how entropy of universe behaves at different temperatures and at different time values of universe. We showed that age of universe is equivalent to Hubble’s constant. And showed how naturally entropy arrives from the manipulations in gravity from Einstein’s equation “00”. And from these results we concluded that universe is isotropic, homogeneous with negative space curvature i.e. K= -1 but not flat K=0 (which doesn’t explain acceleration and deceleration of universe). From these results of gravity, entropy, temperature and time we discussed the genesis of time. And proposed that at absolute zero temperature universe survives as a superconductor and that particular temperature is called as “Critical Absolute Temperature (TAB). And genesis of time occurs at first fluxon repulsion in the absolute zero temperature of universe. 


2018 ◽  
Vol 69 (2) ◽  
pp. 199-236
Author(s):  
Martin Braxatoris ◽  
Michal Ondrejčík

Abstract The paper proposes a basis of theory with the aim of clarifying the casual nature of the relationship between the West Slavic and non-West Slavic Proto-Slavic base of the Slovak language. The paper links the absolute chronology of the Proto-Slavic language changes to historical and archaeological information about Slavs and Avars. The theory connects the ancient West Slavic core of the Proto-Slavic base of the Slovak language with Sclaveni, and non-West Slavic core with Antes, which are connected to the later population in the middle Danube region. It presumes emergence and further expansion of the Slavic koiné, originally based on the non-West Slavic dialects, with subsequent influence on language of the western Slavic tribes settled in the north edge of the Avar Khaganate. The paper also contains a periodization of particular language changes related to the situation in the Khaganate of that time.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

The Third Law was introduced in Chapter 9; this chapter develops the Third Law more fully, introducing absolute entropies, and examining how adiabatic demagnetisation can be used to approach the absolute zero of temperature.


Author(s):  
Andrew Clarke

Temperature is that property of a body which determines whether it gains or loses energy in a particular environment. In classical thermodynamics temperature is defined by the relationship between energy and entropy. Temperature can be defined only for a body that is in thermodynamic and thermal equilibrium; whilst organisms do not conform to these criteria, the errors in assuming that they do are generally small. The Celsius and Fahrenheit temperature scales are arbitrary because they require two fixed points, one to define the zero and the other to set the scale. The thermodynamic (absolute) scale of temperature has a natural zero (absolute zero) and is defined by the triple point of water. Its unit of temperature is the Kelvin. The Celsius scale is convenient for much ecological and physiological work, but where temperature is included in statistical or deterministic models, only thermodynamic temperature should be used. Past temperatures can only be reconstructed with the use of proxies, the most important of which are based on isotope fractionation.


The specific heats of three paramagnetic salts, neodymium magnesium nitrate, manganous ammonium sulphate and ferric ammonium alum, have been measured at temperatures below 1°K using the method of γ -ray heating. The temperature measurements were made in the first instance in terms of the magnetic susceptibilities of the salts, the relation of the susceptibility to the absolute temperature having been determined for each salt in earlier experiments. The γ -ray heatings gave the specific heat in arbitrary units. The absolute values of the specific heats were found by extrapolating the results of paramagnetic relaxation measurements at higher temperatures. The measured specific heat of neodymium magnesium nitrate is compared with the value calculated from paramagnetic resonance data, and good agreement is found.


Sign in / Sign up

Export Citation Format

Share Document