Systematics and evolution of Lentibulariaceae: III. Utricularia

Author(s):  
Richard W. Jobson ◽  
Paulo C. Baleeiro ◽  
Cástor Guisande

Utricularia is a morphologically and ecologically diverse genus currently comprising more than 230 species divided into three subgenera—Polypompholyx, Utricularia, and Bivalvaria—and 35 sections. The genus is distributed worldwide except on the poles and most oceanic islands. The Neotropics has the highest species diversity, followed by Australia. Compared to its sister genera, Utricularia has undergone greater rates of speciation, which are linked to its extreme morphological flexibility that has resulted in the evolution of habitat-specific forms: terrestrial, rheophytic, aquatic, lithophytic, and epiphytic. Molecular phylogenetic studies have resolved relationships for 44% of the species across 80% of the sections. Scant data are available for phylogeography or population-level processes such as gene flow, hybridization, or pollination. Because nearly 90% of the species are endemics, data are urgently needed to determine how to protect vulnerable species and their habitats.

2008 ◽  
Vol 363 (1508) ◽  
pp. 3347-3361 ◽  
Author(s):  
Christine E Parent ◽  
Adalgisa Caccone ◽  
Kenneth Petren

Remote oceanic islands have long been recognized as natural models for the study of evolutionary processes involved in diversification. Their remoteness provides opportunities for isolation and divergence of populations, which make islands remarkable settings for the study of diversification. Groups of islands may share a relatively similar geological history and comparable climate, but their inhabitants experience subtly different environments and have distinct evolutionary histories, offering the potential for comparative studies. A range of organisms have colonized the Galápagos Islands, and various lineages have radiated throughout the archipelago to form unique assemblages. This review pays particular attention to molecular phylogenetic studies of Galápagos terrestrial fauna. We find that most of the Galápagos terrestrial fauna have diversified in parallel to the geological formation of the islands. Lineages have occasionally diversified within islands, and the clearest cases occur in taxa with very low vagility and on large islands with diverse habitats. Ecology and habitat specialization appear to be critical in speciation both within and between islands. Although the number of phylogenetic studies is continuously increasing, studies of natural history, ecology, evolution and behaviour are essential to completely reveal how diversification proceeded on these islands.


Author(s):  
D. G. Melnikov ◽  
L. I. Krupkina

Based on the published data of molecular phylogenetic studies of the tribe Cariceae Dumort. genera (Cyperaceae), obtained by an international collaboration (The Global Carex Group, 2016; et al.), and morphological characters of the genera (Kukkonen, 1990; and others), new nomenclatural combinations and replacement names in the genus Carex L. are published for 11 species, one subspecies and two sections previously included in the genus Kobresia Willd.


2021 ◽  
Vol 7 (12) ◽  
pp. eabe2741
Author(s):  
Paschalia Kapli ◽  
Paschalis Natsidis ◽  
Daniel J. Leite ◽  
Maximilian Fursman ◽  
Nadia Jeffrie ◽  
...  

The bilaterally symmetric animals (Bilateria) are considered to comprise two monophyletic groups, Protostomia (Ecdysozoa and the Lophotrochozoa) and Deuterostomia (Chordata and the Xenambulacraria). Recent molecular phylogenetic studies have not consistently supported deuterostome monophyly. Here, we compare support for Protostomia and Deuterostomia using multiple, independent phylogenomic datasets. As expected, Protostomia is always strongly supported, especially by longer and higher-quality genes. Support for Deuterostomia, however, is always equivocal and barely higher than support for paraphyletic alternatives. Conditions that cause tree reconstruction errors—inadequate models, short internal branches, faster evolving genes, and unequal branch lengths—coincide with support for monophyletic deuterostomes. Simulation experiments show that support for Deuterostomia could be explained by systematic error. The branch between bilaterian and deuterostome common ancestors is, at best, very short, supporting the idea that the bilaterian ancestor may have been deuterostome-like. Our findings have important implications for the understanding of early animal evolution.


Author(s):  
Timothy L Collins ◽  
Jeremy J Bruhl ◽  
Alexander N Schmidt-Lebuhn ◽  
Ian R H Telford ◽  
Rose L Andrew

Abstract Golden everlasting paper daisies (Xerochrysum, Gnaphalieae, Asteraceae) were some of the earliest Australian native plants to be cultivated in Europe. Reputedly a favourite of Napoléon Bonaparte and Empress Joséphine, X. bracteatum is thought to have been introduced to the island of St Helena in the South Atlantic during Napoléon’s exile there. Colourful cultivars were developed in the 1850s, and there is a widely held view that these were produced by crossing Xerochrysum with African or Asian Helichrysum spp. Recent molecular phylogenetic analyses and subtribal classification of Gnaphalieae cast doubt on this idea. Using single-nucleotide polymorphism (SNP) data, we looked for evidence of gene flow between modern cultivars, naturalized paper daisies from St Helena and four Xerochrysum spp. recorded in Europe in the 1800s. There was strong support for gene flow between cultivars and X. macranthum. Paper daisies from St Helena were genotypically congruent with X. bracteatum and showed no indications of ancestry from other species or from the cultivars, consistent with the continuous occurrence of naturalized paper daisies introduced by Joséphine and Napoléon. We also present new evidence for the origin of colourful Xerochrysum cultivars and hybridization of congeners in Europe from Australian collections.


Phytotaxa ◽  
2016 ◽  
Vol 263 (2) ◽  
pp. 98 ◽  
Author(s):  
JULIA FERM ◽  
JESPER KÅREHED ◽  
BIRGITTA BREMER ◽  
SYLVAIN G. RAZAFIMANDIMBISON

The Malagasy genus Carphalea (Rubiaceae) consists of six species (C. angulata, C. cloiselii, C. kirondron, C. linearifolia, C. madagascariensis, C. pervilleana) of shrubs or small trees and is recognizable by a distinctly lobed calyx, 2(–4)-locular ovaries, each locule with several ovules on a rod-like stalk arising from the base of the locule, and indehiscent fruits. Carphalea linearifolia, rediscovered in 2010, has not previously been included in any Rubiaceae molecular phylogenetic studies. We re-investigated the monophyly of Carphalea using sequence data from chloroplast (rps16 and trnT-F) and nuclear (ITS and ETS) markers analysed with parsimony and Bayesian methods. Carphalea linearifolia forms a clade with C. cloiselii and the type species C. madagascariensis. This clade is sister to a clade consisting of the rest of the Carphalea species plus the genus Triainolepis. According to these results, the new genus Paracarphalea is here described to accommodate Carphalea angulata, C. kirondron, and C. pervilleana. The conservation status of Carphalea linearifolia is assessed as critically endangered according to IUCN criteria.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 574
Author(s):  
Wasiatus Sa’diyah ◽  
Akira Hashimoto ◽  
Gen Okada ◽  
Moriya Ohkuma

The diversity of sporocarp-inhabiting fungi (SCIF) was examined using six samples of xylarialean fungi from two different forests in Ibaraki Prefecture, Japan: a moist forest in the Sakuragawa area and an urban dry forest in the Tsukuba area. These fungi were enumerated using direct observation and dilution plate methods. We obtained 44 isolates, and careful morphological and molecular phylogenetic studies of these isolates revealed that approximately 30% of the operating taxonomic units were undescribed or cryptic species related to known fungi. Although typical mycoparasitic fungi, such as helotialean fungi and Trichoderma spp., were not isolated, the genera Acremonium, Acrodontium, and Simplicillium were detected. Comparisons of SCIF communities between the two forests suggested that the number of isolated species in the Sakuragawa area was lower than that in the Tsukuba area. Soil-borne fungi, such as Aspergillus, Beauveria, Penicillium, and Talaromyces, or polypores/corticioid mushrooms, are frequently detected in the Tsukuba area. Factors affecting SCIF communities in the two forests are discussed. Some noteworthy fungi are briefly described with notes on taxonomy, ecology, and molecular phylogeny.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Agata Kaczmarek ◽  
Mieczysława I. Boguś

AbstractThe relationship between entomopathogenic fungi and their insect hosts is a classic example of the co-evolutionary arms race between pathogen and target host. The present review describes the entomopathogenic potential of Chytridiomycota and Blastocladiomycota fungi, and two groups of fungal allies: Oomycota and Microsporidia. The Oomycota (water moulds) are considered as a model biological control agent of mosquito larvae. Due to their shared ecological and morphological similarities, they had long been considered a part of the fungal kingdom; however, phylogenetic studies have since placed this group within the Straminipila. The Microsporidia are parasites of economically-important insects, including grasshoppers, lady beetles, bumblebees, colorado potato beetles and honeybees. They have been found to display some fungal characteristics, and phylogenetic studies suggest that they are related to fungi, either as a basal branch or sister group. The Blastocladiomycota and Chytridiomycota, named the lower fungi, historically were described together; however, molecular phylogenetic and ultrastructural research has classified them in their own phylum. They are considered parasites of ants, and of the larval stages of black flies, mosquitoes and scale insects.


Lankesteriana ◽  
2011 ◽  
Vol 11 (3) ◽  
Author(s):  
M. Wilson ◽  
C. Belle ◽  
A. Dang ◽  
P. Hannan ◽  
C. Kenyon ◽  
...  

Several revisions of the genus Pleurothallis have been proposed. Luer has proposed that Pleurothallis species in subgenus Scopula be segregated into the genera Colombiana and Ancipitia. Szlachetko and Margonska (2001) proposed the genus Zosterophyllanthos for Pleurothallis subsection Macrophyllae-Fasciculatae. As an alternative, Luer (2005) proposed the genus Acronia by uniting Pleurothallis subsection Macrophyllae-Fasciculatae with subsections Acroniae and Amphygiae. The molecular phylogenetic studies by Pridgeon and Chase (2001), however, suggested that these taxonomic revisions might not be justified. We report here a more detailed phylogenetic analysis of the genus Pleurothallis, with emphasis on subsection Macrophyllae-Fasciculatae, with data primarily from nuclear ITS sequencing, supplemented with preliminary data from plastid DNA (rpoB2, rpoC1, and ycf1) sequencing. Some initial, tentative conclusions can be drawn. In the strict consensus maximum-parsimony tree of ITS data, many of the clades collapse, leaving a polytomy with a single, highly supported node that tentatively could be used to delimit the genus Pleurothallis. Such a tree would argue for an expanded concept of the genus Pleurothallis, in which the groups Ancipitia, Colombiana, and Acronia/Zosterophyllanthos, if shown to be monophyletic, are relegated to subgenera. 


2021 ◽  
pp. 1-13
Author(s):  
Ishan Agarwal ◽  
Rachunliu G. Kamei ◽  
Stephen Mahony

Abstract Northeast Indian biodiversity has long been considered to have a stronger affinity to Southeast Asian rather than Peninsular Indian fauna, however, few molecular phylogenetic studies have explored this hypothesis. In Asia, the polyphyletic gekkonid genus Cnemaspis sensu lato is comprised of two distantly related groups; one primarily from South Asia with some members in Southeast Asia, and the other exclusively from Southeast Asia. Cnemaspis assamensis is a systematically obscure and geographically isolated species (>1400 km from its nearest congeners) from the Brahmaputra River Valley in Northeast India. We provide the first molecular phylogenetic assessment of this species based on a partial ND2 gene fragment. Cnemaspis assamensis is determined to be a deeply divergent (Oligocene) member of the South Asian radiation and is sister to the podihuna clade which is endemic to Sri Lanka. The biogeographic implications of this find are discussed and this is suspected to represent a rare example of true disjunction between the wet zones of Northeast India and southern India/Sri Lanka. These results further emphasise the importance of Northeast India as a refuge for unique ancient faunal lineages.


2020 ◽  
pp. 280-302
Author(s):  
Kristina von Rintelen ◽  
Patricio De los Ríos ◽  
Thomas von Rintelen

Crustacea in standing waters are a diverse taxonomic assemblage with representatives in all available habitats from the benthic zone to the pelagial in larger water bodies. While most higher taxa are widespread and occasionally cosmopolitan, this is only partially true at the genus and species level. The crustacean fauna of geologically young lakes, or ponds, is characterized by widespread species that are not even necessarily restricted to lentic habitats. These species generally have good to excellent dispersal capabilities, especially those dwelling in ephemeral habitats. Small groups such as branchiopods and copepods dominate under these conditions among obligate still-water dwellers. In contrast, endemism and occasional striking adaptations are the hallmarks of crustacean species flocks, especially in the radiations of amphipods, decapods, and ostracods in the fewer than 10 ancient lakes worldwide. These radiations have arisen in situ through the diversification of unspecialized ancestors. All comparatively well-studied radiations for which molecular phylogenetic, taxonomic, and ecological data are available show particular adaptations of trophic morphology correlated to specific habitats. Prime examples are the species flocks of amphipods in Lake Baikal and of atyid shrimps in Lake Tanganyika and in two Indonesian lakes. These groups have most likely evolved through adaptive radiation. A major challenge for research on crustaceans in ancient lakes, and in standing waters generally outside Europe and North America, is the lack of basic data from species diversity to genetics for many, if not most, taxa. Getting a grip on species diversity, distributions, ecology, and, at a different level, genomics will be a research priority for coming decades.


Sign in / Sign up

Export Citation Format

Share Document