Introduction

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations is one of the major, largely unaddressed issues in biodiversity conservation. Many species across the planet have fragmented distributions with small isolated populations that are potentially suffering from inbreeding and loss of genetic diversity (genetic erosion), leading to elevated extinction risk. Fortunately, genetic deterioration can usually be remedied by gene flow from another population (crossing between populations within species), yet this is rarely done, in part because of fears that crossing may be harmful (but we can predict when this will occur). We address management of gene flow between previously isolated populations and genetic management under global climate change.

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations is one of the major, largely unaddressed issues in biodiversity conservation. Many species across the planet have fragmented distributions with small isolated populations that are potentially suffering from inbreeding and loss of genetic diversity (genetic erosion), leading to elevated extinction risk. Fortunately, genetic deterioration can usually be remedied by augmenting gene flow (crossing between populations within species), yet this is rarely done, in part because of fears that crossing may be harmful (but it is possible to predict when this will occur). Benefits and risks of genetic problems are sometimes altered in species with diverse mating systems and modes of inheritance. Adequate genetic management depends on appropriate delineation of species. We address management of gene flow between previously isolated populations and genetic management under global climate change.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark Eldridge ◽  
Michele R. Dudash ◽  
...  

The biological diversity of the planet is being rapidly depleted due to the direct and indirect consequences of human activity. As the size of animal and plant populations decrease and fragmentation increases, loss of genetic diversity reduces their ability to adapt to changes in the environment, with inbreeding and reduced fitness inevitable consequences for many species. Many small isolated populations are going extinct unnecessarily. In many cases, such populations can be genetically rescued by gene flow into them from another population within the species, but this is very rarely done. This novel and authoritative book addresses the issues involved in genetic management of fragmented animal and plant populations, including inbreeding depression, loss of genetic diversity and elevated extinction risk in small isolated populations, augmentation of gene flow, genetic rescue, causes of outbreeding depression and predicting its occurrence, desirability and implementation of genetic translocations to cope with climate change, and defining and diagnosing species for conservation purposes.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Adverse genetic impacts on fragmented populations are expected to accelerate under global climate change. Many populations and species may not be able to adapt in situ, or move unassisted to suitable habitat. Management may reduce these threats by augmenting genetic diversity to improve the ability to adapt evolutionarily, by translocation, including that outside the species’ historical range (assisted colonization) and by ameliorating non-genetic threats. Global climate change amplifies the need for genetic management of fragmented populations.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Adverse genetic impacts on fragmented populations are expected to worsen under global climate change. Many populations and species may not be able to adapt in situ, or to move unassisted to suitable habitat. Management may reduce these threats by augmenting genetic diversity to improve the ability to adapt evolutionarily, by translocation, including that outside the species’ historical range, and by ameliorating non-genetic threats. Global climate change amplifies the need for genetic management of fragmented populations.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark Eldridge ◽  
Michele R. Dudash ◽  
...  

The biological diversity of the planet is being rapidly depleted due to the direct and indirect consequences of human activity. As the size of wild animal and plant populations decreases and fragmentation increases, inbreeding reduces fitness and loss of genetic diversity reduces their ability to adapt to changes in the environment. Many small isolated populations are going extinct unnecessarily. In many cases, such populations can be genetically rescued by gene flow from another population within the species, but this is very rarely done. This book provides a practical guide to the genetic management of fragmented animal and plant populations.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Inbreeding reduces survival and reproduction (i.e. it causes inbreeding depression), and thereby increases extinction risk. Inbreeding depression is due to increased homozygosity for harmful alleles and at loci exhibiting heterozygote advantage. Inbreeding depression is nearly universal in sexually reproducing organisms that are diploid or have higher ploidies. Impacts of inbreeding are generally greater in species that naturally outbreed than those that inbreed, in stressful than benign environments, and for fitness than peripheral traits. Harmful effects accumulate across the life cycle, resulting in devastating effects on total fitness in outbreeding species.Species face ubiquitous environmental change and must adapt or they will go extinct. Genetic diversity is the raw material required for evolutionary adaptation. However, loss of genetic diversity is unavoidable in small isolated populations, diminishing their capacity to evolve in response to environmental changes, and thereby increasing extinction risk.


2011 ◽  
Vol 279 (1726) ◽  
pp. 39-47 ◽  
Author(s):  
Jim Provan ◽  
Christine A. Maggs

Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus , a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two single-copy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.


2012 ◽  
Vol 22 (4) ◽  
pp. 925-946 ◽  
Author(s):  
Steffen U. Pauls ◽  
Carsten Nowak ◽  
Miklós Bálint ◽  
Markus Pfenninger

2020 ◽  
Vol 18 (2) ◽  
pp. 185-202
Author(s):  
Aleksey A. Ilinov ◽  
Boris V. Raevsky ◽  
Olga V. Chirva

Background. The genetic diversity of forest tree species populations is a key factor contributing to their resistance against negative effects of human activity, and the global climate change. The aim of the present study was to evaluate the state of gene pools of the main forest-forming species in the White Sea watershed. Materials and methods. Five populations of Norway spruce and seven populations of Scotch pine have been selected within the Arctic zone of the European part of Russia (the western part of the White Sea watershed), along with two boundary ones located near the northern borders of the abovementioned species areas. The analysis of the spruce samples had been performed using five nuclear SSR loci, while for the pine samples it was four. DNA fragments were separated on a sequencer CEQ 8000. The main criteria of the genetic diversity (A99%, Ho, He) and F-statistics were calculated. Results. The marginal spruce populations were characterized by the largest magnitude of the genetic diversity (Ho = 0.46; He = 0.47) and isolation (FST = 0.33) compared to other populations of the same species. The differences were statistically significant. All pine populations studied demonstrated a higher level of genetic diversity (Ho = 0.50, He = 0.63) compared to spruce populations. The differences between the boundary and in-area populations were not statistically reliable (FST = 0.04). Conclusion. Our investigation revealed a sufficiently high level of spruce and pine northern populations genetic diversity making them able to withstand expected negative effects of anthropogenic activity and global climate change.


Sign in / Sign up

Export Citation Format

Share Document