Internal categoricity and the sets

Author(s):  
Tim Button ◽  
Sean Walsh

As the previous chapter discussed the internalist perspective on the categoricity of arithmetic, this chapter presents the internalist perspective on sets. In particular, we show both how to internalise Scott-Potter set theory its quasi-categoricity theorem, and how to internalise Zermelo’s Quasi-Categoricity Theorem. As in the case of arithmetic, this gives a non-semantic way to draw the boundary between algebraic and univocal theories. A particularly compelling case of the quasi-univocity of set theory revolves around the continuum hypothesis. Furthermore, by additionally postulating that the size of the pure sets is the same as the size of the universe, these famous quasi-categoricity results can actually be turned into internal categoricity results simpliciter, so that one has full univocity instead of mere quasi-univocity. In the appendices we prove these results, and we discuss how they relate to important work by McGee and Martin.

2001 ◽  
Vol 66 (4) ◽  
pp. 1766-1782 ◽  
Author(s):  
Ali Enayat

Abstract.A model = (M. E, …) of Zermelo-Fraenkel set theory ZF is said to be 0-like. where E interprets ∈ and θ is an uncountable cardinal, if ∣M∣ = θ but ∣{b ∈ M: bEa}∣ < 0 for each a ∈ M, An immediate corollary of the classical theorem of Keisler and Morley on elementary end extensions of models of set theory is that every consistent extension of ZF has an ℵ1-like model. Coupled with Chang's two cardinal theorem this implies that if θ is a regular cardinal 0 such that 2<0 = 0 then every consistent extension of ZF also has a 0+-like model. In particular, in the presence of the continuum hypothesis every consistent extension of ZF has an ℵ2-like model. Here we prove:Theorem A. If 0 has the tree property then the following are equivalent for any completion T of ZFC:(i) T has a 0-like model.(ii) Ф ⊆ T. where Ф is the recursive set of axioms {∃κ (κ is n-Mahlo and “Vκis a Σn-elementary submodel of the universe”): n ∈ ω}.(iii) T has a λ-like model for every uncountable cardinal λ.Theorem B. The following are equiconsistent over ZFC:(i) “There exists an ω-Mahlo cardinal”.(ii) “For every finite language , all ℵ2-like models of ZFC() satisfy the schemeФ().


Author(s):  
John P. Burgess

the ‘universe’ of constructible sets was introduced by Kurt Gödel in order to prove the consistency of the axiom of choice (AC) and the continuum hypothesis (CH) with the basic (ZF) axioms of set theory. The hypothesis that all sets are constructible is the axiom of constructibility (V = L). Gödel showed that if ZF is consistent, then ZF + V = L is consistent, and that AC and CH are provable in ZF + V = L.


2012 ◽  
Vol 5 (3) ◽  
pp. 416-449 ◽  
Author(s):  
JOEL DAVID HAMKINS

AbstractThe multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe view. In particular, I argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for.


2007 ◽  
Vol 13 (2) ◽  
pp. 153-188 ◽  
Author(s):  
Akihiro Kanamori

Kurt Gödel (1906–1978) with his work on the constructible universeLestablished the relative consistency of the Axiom of Choice (AC) and the Continuum Hypothesis (CH). More broadly, he ensured the ascendancy of first-order logic as the framework and a matter of method for set theory and secured the cumulative hierarchy view of the universe of sets. Gödel thereby transformed set theory and launched it with structured subject matter and specific methods of proof. In later years Gödel worked on a variety of set theoretic constructions and speculated about how problems might be settled with new axioms. We here chronicle this development from the point of view of the evolution of set theory as a field of mathematics. Much has been written, of course, about Gödel's work in set theory, from textbook expositions to the introductory notes to his collected papers. The present account presents an integrated view of the historical and mathematical development as supported by his recently published lectures and correspondence. Beyond the surface of things we delve deeper into the mathematics. What emerges are the roots and anticipations in work of Russell and Hilbert, and most prominently the sustained motif of truth as formalizable in the “next higher system”. We especially work at bringing out how transforming Gödel's work was for set theory. It is difficult now to see what conceptual and technical distance Gödel had to cover and how dramatic his re-orientation of set theory was.


1984 ◽  
Vol 49 (3) ◽  
pp. 754-773 ◽  
Author(s):  
A. P. Hiller ◽  
J. Zimbarg

The universe of sets, V, is usually seen as an entity structured in successive levels, each level being made up of objects and collections of objects belonging to the previous levels. This process of obtaining sets and axioms for set theory can be seen in Scott [74] and Shoenfield [77].The approach we want to take differs from the previous one very strongly: the seeds from which we want to generate our universe of classes are to be the one-variable predicates (given by one-free-variable formulas) of the formal language we shall be using. In other words, any one-variable predicate of the language is to be represented as a class in our universe. In this sense, we view our theory as being about a self-referential language, a language whose predicates refer to objects which are predicates of the language itself.We want, in short, a system such that: (i) any predicate may be represented by an object to be studied by the theory itself; (ii) the axioms for the theory may be derived from the general principle that we are dealing with a language that aims at describing its own predicates; and (iii) the theory should be strong enough to derive ZFC and suggest answers to the existence of large cardinals and to the continuum hypothesis.An objection to such a project arises immediately: in view of the Russell-Zermelo paradox, how is it possible to have all predicates of the language as elements of the universe? This objection will be easy to deal with: we shall provide our language with a type structure to avoid paradox.


1990 ◽  
Vol 55 (3) ◽  
pp. 1022-1036 ◽  
Author(s):  
Arnold W. Miller

AbstractIn this paper we ask the question: to what extent do basic set theoretic properties of Loeb measure depend on the nonstandard universe and on properties of the model of set theory in which it lies? We show that, assuming Martin's axiom and κ-saturation, the smallest cover by Loeb measure zero sets must have cardinality less than κ. In contrast to this we show that the additivity of Loeb measure cannot be greater than ω1. Define cof(H) as the smallest cardinality of a family of Loeb measure zero sets which cover every other Loeb measure zero set. We show that card(⌊log2(H)⌋) ≤ cof (H) ≤ card(2H), where card is the external cardinality. We answer a question of Paris and Mills concerning cuts in nonstandard models of number theory. We also present a pair of nonstandard universes M ≼ N and hyperfinite integer H ∈ M such that H is not enlarged by N, 2H contains new elements, but every new subset of H has Loeb measure zero. We show that it is consistent that there exists a Sierpiński set in the reals but no Loeb-Sierpiński set in any nonstandard universe. We also show that it is consistent with the failure of the continuum hypothesis that Loeb-Sierpiński sets can exist in some nonstandard universes and even in an ultrapower of a standard universe.


1972 ◽  
Vol 37 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Rolando Chuaqui

The purpose of this work is to formulate a general theory of forcing with classes and to solve some of the consistency and independence problems for the impredicative theory of classes, that is, the set theory that uses the full schema of class construction, including formulas with quantification over proper classes. This theory is in principle due to A. Morse [9]. The version I am using is based on axioms by A. Tarski and is essentially the same as that presented in [6, pp. 250–281] and [10, pp. 2–11]. For a detailed exposition the reader is referred there. This theory will be referred to as .The reflection principle (see [8]), valid for other forms of set theory, is not provable in . Some form of the reflection principle is essential for the proofs in the original version of forcing introduced by Cohen [2] and the version introduced by Mostowski [10]. The same seems to be true for the Boolean valued models methods due to Scott and Solovay [12]. The only suitable form of forcing for found in the literature is the version that appears in Shoenfield [14]. I believe Vopěnka's methods [15] would also be applicable. The definition of forcing given in the present paper is basically derived from Shoenfield's definition. Shoenfield, however, worked in Zermelo-Fraenkel set theory.I do not know of any proof of the consistency of the continuum hypothesis with assuming only that is consistent. However, if one assumes the existence of an inaccessible cardinal, it is easy to extend Gödel's consistency proof [4] of the axiom of constructibility to .


2016 ◽  
Vol 100 (549) ◽  
pp. 442-449
Author(s):  
A. C. Paseau

Metamathematics is the mathematical study of mathematics itself. Two of its most famous theorems were proved by Kurt Gödel in 1931. In a simplified form, Gödel's first incompleteness theorem states that no reasonable mathematical system can prove all the truths of mathematics. Gödel's second incompleteness theorem (also simplified) in turn states that no reasonable mathematical system can prove its own consistency. Another famous undecidability theorem is that the Continuum Hypothesis is neither provable nor refutable in standard set theory. Many of us logicians were first attracted to the field as students because we had heard something of these results. All research mathematicians know something of them too, and have at least a rough sense of why ‘we can't prove everything we want to prove’.


Author(s):  
Colin McLarty

What mathematicians know and use about sets varies across branches of mathematics but rarely includes such fundamental aspects of Zermelo–Fraenkel (ZF) set theory as the iterative hierarchy. All mathematicians know and use the axioms of the Elementary Theory of the Category of Sets (ETCS), though few know ETCS or any set theory by name. The chapter depicts the iterative hierarchy of ZF and constructibility as gauge theories. Since gauge theories are prominently used in physics, so these are used in work on the continuum hypothesis, large cardinals, and provability in arithmetic. But mathematicians outside logic avoid these gauges and work with structures only up to isomorphism, as does ETCS.


Sign in / Sign up

Export Citation Format

Share Document