Self-reference with negative types

1984 ◽  
Vol 49 (3) ◽  
pp. 754-773 ◽  
Author(s):  
A. P. Hiller ◽  
J. Zimbarg

The universe of sets, V, is usually seen as an entity structured in successive levels, each level being made up of objects and collections of objects belonging to the previous levels. This process of obtaining sets and axioms for set theory can be seen in Scott [74] and Shoenfield [77].The approach we want to take differs from the previous one very strongly: the seeds from which we want to generate our universe of classes are to be the one-variable predicates (given by one-free-variable formulas) of the formal language we shall be using. In other words, any one-variable predicate of the language is to be represented as a class in our universe. In this sense, we view our theory as being about a self-referential language, a language whose predicates refer to objects which are predicates of the language itself.We want, in short, a system such that: (i) any predicate may be represented by an object to be studied by the theory itself; (ii) the axioms for the theory may be derived from the general principle that we are dealing with a language that aims at describing its own predicates; and (iii) the theory should be strong enough to derive ZFC and suggest answers to the existence of large cardinals and to the continuum hypothesis.An objection to such a project arises immediately: in view of the Russell-Zermelo paradox, how is it possible to have all predicates of the language as elements of the universe? This objection will be easy to deal with: we shall provide our language with a type structure to avoid paradox.

2007 ◽  
Vol 13 (2) ◽  
pp. 153-188 ◽  
Author(s):  
Akihiro Kanamori

Kurt Gödel (1906–1978) with his work on the constructible universeLestablished the relative consistency of the Axiom of Choice (AC) and the Continuum Hypothesis (CH). More broadly, he ensured the ascendancy of first-order logic as the framework and a matter of method for set theory and secured the cumulative hierarchy view of the universe of sets. Gödel thereby transformed set theory and launched it with structured subject matter and specific methods of proof. In later years Gödel worked on a variety of set theoretic constructions and speculated about how problems might be settled with new axioms. We here chronicle this development from the point of view of the evolution of set theory as a field of mathematics. Much has been written, of course, about Gödel's work in set theory, from textbook expositions to the introductory notes to his collected papers. The present account presents an integrated view of the historical and mathematical development as supported by his recently published lectures and correspondence. Beyond the surface of things we delve deeper into the mathematics. What emerges are the roots and anticipations in work of Russell and Hilbert, and most prominently the sustained motif of truth as formalizable in the “next higher system”. We especially work at bringing out how transforming Gödel's work was for set theory. It is difficult now to see what conceptual and technical distance Gödel had to cover and how dramatic his re-orientation of set theory was.


2001 ◽  
Vol 66 (4) ◽  
pp. 1766-1782 ◽  
Author(s):  
Ali Enayat

Abstract.A model = (M. E, …) of Zermelo-Fraenkel set theory ZF is said to be 0-like. where E interprets ∈ and θ is an uncountable cardinal, if ∣M∣ = θ but ∣{b ∈ M: bEa}∣ < 0 for each a ∈ M, An immediate corollary of the classical theorem of Keisler and Morley on elementary end extensions of models of set theory is that every consistent extension of ZF has an ℵ1-like model. Coupled with Chang's two cardinal theorem this implies that if θ is a regular cardinal 0 such that 2<0 = 0 then every consistent extension of ZF also has a 0+-like model. In particular, in the presence of the continuum hypothesis every consistent extension of ZF has an ℵ2-like model. Here we prove:Theorem A. If 0 has the tree property then the following are equivalent for any completion T of ZFC:(i) T has a 0-like model.(ii) Ф ⊆ T. where Ф is the recursive set of axioms {∃κ (κ is n-Mahlo and “Vκis a Σn-elementary submodel of the universe”): n ∈ ω}.(iii) T has a λ-like model for every uncountable cardinal λ.Theorem B. The following are equiconsistent over ZFC:(i) “There exists an ω-Mahlo cardinal”.(ii) “For every finite language , all ℵ2-like models of ZFC() satisfy the schemeФ().


1978 ◽  
Vol 43 (3) ◽  
pp. 613-613 ◽  
Author(s):  
Stephen C. Kleene

Gödel has called to my attention that p. 773 is misleading in regard to the discovery of the finite axiomatization and its place in his proof of the consistency of GCH. For the version in [1940], as he says on p. 1, “The system Σ of axioms for set theory which we adopt [a finite one] … is essentially due to P. Bernays …”. However, it is not at all necessary to use a finite axiom system. Gödel considers the more suggestive proof to be the one in [1939], which uses infinitely many axioms.His main achievement regarding the consistency of GCH, he says, really is that he first introduced the concept of constructible sets into set theory defining it as in [1939], proved that the axioms of set theory (including the axiom of choice) hold for it, and conjectured that the continuum hypothesis also will hold. He told these things to von Neumann during his stay at Princeton in 1935. The discovery of the proof of this conjecture On the basis of his definition is not too difficult. Gödel gave the proof (also for GCH) not until three years later because he had fallen ill in the meantime. This proof was using a submodel of the constructible sets in the lowest case countable, similar to the one commonly given today.


Author(s):  
John P. Burgess

the ‘universe’ of constructible sets was introduced by Kurt Gödel in order to prove the consistency of the axiom of choice (AC) and the continuum hypothesis (CH) with the basic (ZF) axioms of set theory. The hypothesis that all sets are constructible is the axiom of constructibility (V = L). Gödel showed that if ZF is consistent, then ZF + V = L is consistent, and that AC and CH are provable in ZF + V = L.


Author(s):  
Tim Button ◽  
Sean Walsh

As the previous chapter discussed the internalist perspective on the categoricity of arithmetic, this chapter presents the internalist perspective on sets. In particular, we show both how to internalise Scott-Potter set theory its quasi-categoricity theorem, and how to internalise Zermelo’s Quasi-Categoricity Theorem. As in the case of arithmetic, this gives a non-semantic way to draw the boundary between algebraic and univocal theories. A particularly compelling case of the quasi-univocity of set theory revolves around the continuum hypothesis. Furthermore, by additionally postulating that the size of the pure sets is the same as the size of the universe, these famous quasi-categoricity results can actually be turned into internal categoricity results simpliciter, so that one has full univocity instead of mere quasi-univocity. In the appendices we prove these results, and we discuss how they relate to important work by McGee and Martin.


2012 ◽  
Vol 5 (3) ◽  
pp. 416-449 ◽  
Author(s):  
JOEL DAVID HAMKINS

AbstractThe multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe view. In particular, I argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for.


Author(s):  
Colin McLarty

A ‘category’, in the mathematical sense, is a universe of structures and transformations. Category theory treats such a universe simply in terms of the network of transformations. For example, categorical set theory deals with the universe of sets and functions without saying what is in any set, or what any function ‘does to’ anything in its domain; it only talks about the patterns of functions that occur between sets. This stress on patterns of functions originally served to clarify certain working techniques in topology. Grothendieck extended those techniques to number theory, in part by defining a kind of category which could itself represent a space. He called such a category a ‘topos’. It turned out that a topos could also be seen as a category rich enough to do all the usual constructions of set-theoretic mathematics, but that may get very different results from standard set theory.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2199
Author(s):  
Markus Scholle

Fluid mechanics has emerged as a basic concept for nearly every field of technology. Despite there being a well-developed mathematical theory and available commercial software codes, the computation of solutions of the governing equations of motion is still challenging, especially due to the nonlinearity involved, and there are still open questions regarding the underlying physics of fluid flow, especially with respect to the continuum hypothesis and thermodynamic local equilibrium. The aim of this Special Issue is to reference recent advances in the field of fluid mechanics both in terms of developing sophisticated mathematical methods for finding solutions of the equations of motion, on the one hand, and on novel approaches to the physical modelling beyond the continuum hypothesis and thermodynamic local equilibrium, on the other.


1990 ◽  
Vol 55 (3) ◽  
pp. 1022-1036 ◽  
Author(s):  
Arnold W. Miller

AbstractIn this paper we ask the question: to what extent do basic set theoretic properties of Loeb measure depend on the nonstandard universe and on properties of the model of set theory in which it lies? We show that, assuming Martin's axiom and κ-saturation, the smallest cover by Loeb measure zero sets must have cardinality less than κ. In contrast to this we show that the additivity of Loeb measure cannot be greater than ω1. Define cof(H) as the smallest cardinality of a family of Loeb measure zero sets which cover every other Loeb measure zero set. We show that card(⌊log2(H)⌋) ≤ cof (H) ≤ card(2H), where card is the external cardinality. We answer a question of Paris and Mills concerning cuts in nonstandard models of number theory. We also present a pair of nonstandard universes M ≼ N and hyperfinite integer H ∈ M such that H is not enlarged by N, 2H contains new elements, but every new subset of H has Loeb measure zero. We show that it is consistent that there exists a Sierpiński set in the reals but no Loeb-Sierpiński set in any nonstandard universe. We also show that it is consistent with the failure of the continuum hypothesis that Loeb-Sierpiński sets can exist in some nonstandard universes and even in an ultrapower of a standard universe.


Sign in / Sign up

Export Citation Format

Share Document