Relational Blockworld and Quantum Field Theory

Author(s):  
Michael Silberstein ◽  
W.M. Stuckey ◽  
Timothy McDevitt

A brief introduction to particle physics and quantum field theory (QFT) is presented in the main thread of chapter 5. The impasse of unification in particle physics is historically reviewed, showing that the dynamical paradigm pervades the development of particle physics and QFT. Thus, as with the conundrums of general relativity and quantum mechanics, dynamical explanation in the mechanical universe is responsible for the impasse regarding unification in particle physics as per QFT. It is shown that RBW’s adynamical approach provides an entirely new view of unification and particle physics. Philosophy of Physics for Chapter 5 uses RBW to resolve the interpretational issues of gauge invariance, gauge fixing, the Aharonov–Bohm effect, regularization, and renormalization, and largely discharges the problems of Poincaré invariance in a graphical approach, inequivalent representations, and Haag’s theorem. Foundational Physics for Chapter 5 shows how classical field theory is related to QFT and introduces gauge fields per QFT.

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 956
Author(s):  
Dafne Carolina Arias-Perdomo ◽  
Adriano Cherchiglia ◽  
Brigitte Hiller ◽  
Marcos Sampaio

Quantum Field Theory, as the keystone of particle physics, has offered great insights into deciphering the core of Nature. Despite its striking success, by adhering to local interactions, Quantum Field Theory suffers from the appearance of divergent quantities in intermediary steps of the calculation, which encompasses the need for some regularization/renormalization prescription. As an alternative to traditional methods, based on the analytic extension of space–time dimension, frameworks that stay in the physical dimension have emerged; Implicit Regularization is one among them. We briefly review the method, aiming to illustrate how Implicit Regularization complies with the BPHZ theorem, which implies that it respects unitarity and locality to arbitrary loop order. We also pedagogically discuss how the method complies with gauge symmetry using one- and two-loop examples in QED and QCD.


Physics Today ◽  
1987 ◽  
Vol 40 (12) ◽  
pp. 86-88
Author(s):  
B. de Wit ◽  
J. Smith ◽  
Lewis H. Ryder ◽  
Peter Becher ◽  
Manfred Böhm ◽  
...  

Author(s):  
S. A. Fulling ◽  
A. G. S. Landulfo ◽  
G. E. A. Matsas

Classical field theory is about fields and how they behave in space–time. Quantum field theory, in practice, usually seems to be about particles and how they scatter. Nevertheless, classical fields must emerge from quantum field theory in appropriate limits, and Michael Duff showed how this happens for the Schwarzschild solution in perturbative quantum gravity. In a series of papers, we and others have shown how classical radiation from an accelerated charge emerges from quantum field theory when the Unruh thermal effect is taken into account. Here, we sharpen those conclusions by showing that, even at finite times, the quantum picture is meaningful and is in close agreement with the classical picture.


2015 ◽  
Vol 04 (01) ◽  
pp. 66-70
Author(s):  
Sheldon Lee Glashow

This is a personal, anecdotal and autobiographical account of my early endeavors in particle physics, emphasizing how they interwove with the conception and eventual acceptance of the quark hypothesis. I focus on the years from 1958, when my doctoral work at Harvard was completed, to 1970, when John Iliopoulos, Luciano Maiani and I introduced the GIM mechanism, thereby extending the electroweak model to include all known particles, and some that were not then known. I have not described the profound advances in quantum field theory and the many difficult and ingenious experimental efforts that undergird my story which is not intended to be an inclusive record of this exciting decade of my discipline. My tale begins almost two years before I met Murray and over five years before the invention of quarks.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1570-1573
Author(s):  
G. DE BERREDO-PEIXOTO

The soft breaking of gauge or other symmetries is the typical Quantum Field Theory phenomenon. In many cases one can apply the Stückelberg procedure, which means introducing some additional field (or fields) and restore the gauge symmetry. The original softly broken theory corresponds to a particular choice of the gauge fixing condition. In this paper we use this scheme for performing quantum calculations for fermion-torsion theory, softly broken by the torsion mass in arbitrary curved spacetime.


2012 ◽  
Vol 27 (27) ◽  
pp. 1250154 ◽  
Author(s):  
HOURI ZIAEEPOUR

In this paper, we address some of the issues raised in the literature about the conflict between a large vacuum energy density, a priori predicted by quantum field theory, and the observed dark energy which must be the energy of vacuum or include it. We present a number of arguments against this claim and in favor of a null vacuum energy. They are based on the following arguments: A new definition for the vacuum in quantum field theory as a frame-independent coherent state; results from a detailed study of condensation of scalar fields in Friedmann–Lemaître–Robertson–Walker (FLRW) background performed in a previous work; and our present knowledge about the Standard Model of particle physics. One of the predictions of these arguments is the confinement of nonzero expectation value of Higgs field to scales roughly comparable with the width of electroweak gauge bosons or shorter. If the observation of Higgs by the LHC is confirmed, accumulation of relevant events and their energy dependence in near future should allow us to measure the spatial extend of the Higgs condensate.


Sign in / Sign up

Export Citation Format

Share Document