Rigid-body motion. Non-inertial coordinate systems

Author(s):  
Gleb L. Kotkin ◽  
Valeriy G. Serbo

This chapter addresses the inertia tensor and its relation with the mass quadrupole moment tensor, the principal axes and the principal moments of inertia, evolution of the period of the Earth’s rotation around its axis due to the action of tidal forces, and the motion of the gyrocompass at a given latitude. The chapter also addresses precession of a symmetric top, the stability of rotations of an asymmetric top, “motion” of a plane disk which rolls in the field of gravity over a smooth horizontal plane, and the displacement from the vertical of a particle which is dropped from a given height with zero initial velocity. Finally, the chapter discusses the Lagrange point in the Sun-Jupiter system.

Author(s):  
Gleb L. Kotkin ◽  
Valeriy G. Serbo

This chapter addresses the inertia tensor and its relation with the mass quadrupole moment tensor, the principal axes and the principal moments of inertia, evolution of the period of the Earth’s rotation around its axis due to the action of tidal forces, and the motion of the gyrocompass at a given latitude. The chapter also addresses precession of a symmetric top, the stability of rotations of an asymmetric top, “motion” of a plane disk which rolls in the field of gravity over a smooth horizontal plane, and the displacement from the vertical of a particle which is dropped from a given height with zero initial velocity. Finally, the chapter discusses the Lagrange point in the Sun-Jupiter system.


Author(s):  
Remco I. Leine ◽  
Giuseppe Capobianco ◽  
Perry Bartelt ◽  
Marc Christen ◽  
Andrin Caviezel

AbstractThe stability properties of a freely rotating rigid body are governed by the intermediate axis theorem, i.e., rotation around the major and minor principal axes is stable whereas rotation around the intermediate axis is unstable. The stability of the principal axes is of importance for the prediction of rockfall. Current numerical schemes for 3D rockfall simulation, however, are not able to correctly represent these stability properties. In this paper an extended intermediate axis theorem is presented, which not only involves the angular momentum equations but also the orientation of the body, and we prove the theorem using Lyapunov’s direct method. Based on the stability proof, we present a novel scheme which respects the stability properties of a freely rotating body and which can be incorporated in numerical schemes for the simulation of rigid bodies with frictional unilateral constraints. In particular, we show how this scheme is incorporated in an existing 3D rockfall simulation code. Simulations results reveal that the stability properties of rotating rocks play an essential role in the run-out length and lateral spreading of rocks.


2020 ◽  
Vol 6 (3) ◽  
pp. 396-397
Author(s):  
Heiner Martin ◽  
Josephine Wittmüß ◽  
Thomas Mittlmeier ◽  
Niels Grabow

AbstractThe investigation of matching of endoprosthesis tibial components to the bone cross section is of interest for the manufacturer as well as for the surgeon. On the one hand, a systemic design of the prosthesis and the assortment is possible, on the other hand, a better matching implantation is enabled on the basis of experience of this study. CT sections were segmented manually using a CAD system and fitted by spline functions, then superseded with cross sections of the tibial component of a modified Hintermann H3 prosthesis. The principal moments of inertia, the direction of the principal axes and the area of the section were evaluated. Based on the relative differences of the principal moments of inertia, recommendations for application of the different prosthesis size and its selection with the surgery can be made.


Author(s):  
Ahmed A. Shabana ◽  
Martin B. Hamper ◽  
James J. O’Shea

In vehicle system dynamics, the effect of the gyroscopic moments can be significant during curve negotiations. The absolute angular velocity of the body can be expressed as the sum of two vectors; one vector is due to the curvature of the curve, while the second vector is due to the rate of changes of the angles that define the orientation of the body with respect to a coordinate system that follows the body motion. In this paper, the configuration of the body in the global coordinate system is defined using the trajectory coordinates in order to examine the effect of the gyroscopic moments in the case of curve negotiations. These coordinates consist of arc length, two relative translations and three relative angles. The relative translations and relative angles are defined with respect to a trajectory coordinate system that follows the motion of the body on the curve. It is shown that when the yaw and roll angles relative to the trajectory coordinate system are constrained and the motion is predominantly rolling, the effect of the gyroscopic moment on the motion becomes negligible, and in the case of pure rolling and zero yaw and roll angles, the generalized gyroscopic moment associated with the system degrees of freedom becomes identically zero. The analysis presented in this investigation sheds light on the danger of using derailment criteria that are not obtained using laws of motion, and therefore, such criteria should not be used in judging the stability of railroad vehicle systems. Furthermore, The analysis presented in this paper shows that the roll moment which can have a significant effect on the wheel/rail contact forces depends on the forward velocity in the case of curve negotiations. For this reason, roller rigs that do not allow for the wheelset forward velocity cannot capture these moment components, and therefore, cannot be used in the analysis of curve negotiations. A model of a suspended railroad wheelset is used in this investigation to study the gyroscopic effect during curve negotiations.


2018 ◽  
Vol 4 (12) ◽  
pp. 2146-2159 ◽  
Author(s):  
Ivona Capjak ◽  
Maja Zebić Avdičević ◽  
Maja Dutour Sikirić ◽  
Darija Domazet Jurašin ◽  
Amela Hozić ◽  
...  

pH, electrolytes and surfactants affected the stability of AgNPs in artificial test water system.


Author(s):  
Alptunc Comak ◽  
Yusuf Altintas

Turn-milling machines are widely used in industry because of their multifunctional capabilities in producing complex parts in one setup. Both milling cutter and workpiece rotate simultaneously while the machine travels in three Cartesian directions leading to five axis kinematics with complex chip generation mechanism. This paper presents a general mathematical model to predict the chip thickness, cutting force, and chatter stability of turn milling operations. The dynamic chip thickness is modeled by considering the rigid body motion, relative vibrations between the tool and workpiece, and cutter-workpiece engagement geometry. The dynamics of the process are governed by delayed differential equations by time periodic coefficients with a time varying delay contributed by two simultaneously rotating spindles and kinematics of the machine. The stability of the system has been solved in semidiscrete time domain as a function of depth of cut, feed, tool spindle speed, and workpiece speed. The stability model has been experimentally verified in turn milling of Aluminum alloy cut with a helical cylindrical end mill.


1998 ◽  
Vol 08 (03) ◽  
pp. 609-617 ◽  
Author(s):  
V. Lanchares ◽  
M. Iñarrea ◽  
J. P. Salas

We consider a dual-spin deformable spacecraft, in the sense that one of the moments of inertia is a periodic function of time such that the center of mass is not altered. In the absence of external torques and spin rotors, by means of the Melnikov's method we prove that the body motion is chaotic. Stabilization is obtained by means of a spinning rotor about one of the principal axes of inertia.


1975 ◽  
Vol 26 (1) ◽  
pp. 20-24
Author(s):  
R Arho

SummaryA unified treatment is given of the orbital and attitude stability of space shuttles in parking orbits (in vacuo) in the earth’s gravitational field. A shuttle in a circular orbit with a principal axis aligned with the horizontal in the orbital plane is found to be in stationary geostatic equilibrium. The demand for stability leads to a condition which must be satisfied by the principal moments of inertia. The stability which is achieved is not asymptotic without control. The stationary state is a stable centre about which a bounded perturbation oscillation without damping may exist.


A cyclic process of refining models of the mechanical structure of the Earth and models of the mechanism of one or more earthquakes is developed. The theory of the elastic-gravitational free oscillations of the Earth is used to derive procedures for resolving nearly degenerate multiplets of normal modes. We show that a global network of seismographs (W.W.S.S.N.) permits resolution for angular orders l ≤ 76 and for frequencies a) w ≤ 0.090 s -1 . The peak or centre frequency of each nearly degenerate multiplet is interpreted to be a gross Earth datum. Together, the data are used to refine models of the mechanical structure of the Earth. The theory of free oscillations is used further to derive procedures for retrieving the mechanism, or moment tensor, of an earthquake point source. We show that a globa network of seismographs permits retrieval for frequencies 0.0125 s-1 ≤ w ≤ 0.0825 s-1 . We show that refined models of structure and mechanism lead to improved resolution and retrieval, and that an array of sources further complements the resolution of multiplets. We present a ‘standardized dataset’ of 1064 distinct, observed eigenfrequencies ol the elastic-gravitational free oscillations of the Earth. These gross-Earth data are compiled from 1461 modes reported in five studies: 2 modes reported by Derr (1969), 159 modes observed by Brune & Gilbert (1974), 240 modes observed by Mendiguren ( 1973), 248 modes observed by Dziewonski & Gilbert (1972,1973) and 812 modes reported here. It is our opinion that the establishment of a standardized dataset should precede the establishment of a standardized model of the Earth. Two new Earth models are presented that are compatible with the modal data. One is derived from model 508 (Gilbert & Dziewonski 1973) and the other from model B1 (Jordan & Anderson 1974). In the outer core and in the lower mantle, below a depth of about 950 km, the differences between the two models are negligibly small. In the inner core there are minor differences and in the upper mantle there are major differences in detail. The two models and the modal data are compatible with traditional ray data, provided that appropriate baseline corrections are made to the latter. The source mechanisms, or moment tensors, of two deep earthquakes, Colombia (1970 July 31) and Peru-Bolivia (1963 August 15), have been retrieved from the seismic spectra. In both cases the moment tensor possesses a compressive (implosive) isotropic part. There is good evidence that isotropic stress release begins gradually, over 80s before the origin time derived from the onset of short-period P and S waves. During the process of stress release the principal axes of the moment rate tensor migrate. The axis of compression is relatively stable, the compressive stress rate is dominant, and the other two axes rotate about the axis of compression. We speculate that earthquakes, occurring deep within descending lithospheric plates, are not sudden shearing movements alone but do exhibit compressive changes in volume such as would be associated with a phase change. We further speculate that compressive changes in volume may occur without sudden shearing movements, that there may be ' silent earthquakes’.


Before discussing its cause, one must be clear in exactly what respect the lunar figure deviates from the equilibrium one. This is necessary because there has been confusion over the question for a long time. It was known early that the Moon’s ellipsoid of inertia is triaxial and that the differences of the principal moments of inertia determined from observations are several times larger than the theoretical values corresponding to hydrostatic equilibrium. The stability of lunar rotation requires that the axis of least moment of inertia point approximately towards the Earth and the laws of Cassini show that it is really so.


Sign in / Sign up

Export Citation Format

Share Document