Beyond Malthus

Author(s):  
Kathleen Araújo

This chapter explores the evolving understanding of carbon and sustainability since the 18th and 19th centuries. Relevant applications of influential ideas are then identified with respect to knowledge, innovation, policy, and meta-level change. More than 100 years ago, Swedish scientist Svante Arrhenius hypothesized about the onset of ice ages and interglacial periods by considering high latitude temperature shifts (NASA Earth Observatory, n.d.). Applying an energy budget model and ideas of other scientists, like John Tyndall, Arrhenius argued that changes in trace atmospheric constituents, particularly carbon dioxide, could significantly alter the Earth’s heat budget (Arrhenius, 1896, 1897; NASA Earth Observatory, n.d.). Today, science indicates that the global, average surface temperature has continued to rise alongside the increase in greenhouse gases. Among global GHGs, CO2 emissions have increased by more than a factor of 1,000 in absolute terms since 1800. During that time, global carbon emissions found in the primary energy supply increased by roughly 6% per year (Grubler, 2008a). This growth in carbon emissions from energy is significant because CO2 from fuel combustion dominates global GHG emissions (IEA, 2015a and 2015b; IPCC, 2013). As noted earlier, 68% of the global GHGs that are attributed to human activity are linked to the energy sector; namely, fuel combustion and fugitive emissions (IEA, 2015a). Within this share, 90% consisted of CO2 (IEA, 2015a). In contrast to the rise in absolute numbers, carbon emissions per unit of output in the global primary energy supply has decreased 36% overall or by slightly less than 0.2% per year over the past two centuries (Grubler, 2008a). This subtle decarbonizing pattern in the energy mix is explained by the faster growth rate of energy use in relation to the rate of carbon emissions from that use. The delinking of energy utilization and carbon emissions occurred in part with the introduction of less carbon-intensive fossil fuel sources, like natural gas, in which a higher hydrogen-to-carbon ratio is evident (Gibbons and Gwin, 2009; Grubler, 2004, citing Marchetti, 1985).

2021 ◽  
Author(s):  
Shasho Megersa ◽  
Kedir Jemal ◽  
Buzayehu Desisa

Abstract Biomass based traditional energy has been the main energy supply in Ethiopia. Efforts are being made to shift to modern bioenergy utilization but the level of contribution of modern bioenergy to the total energy supply of the country’s supply is not computed. In this synthesis we described the contribution of bioenergy to modern energy utilization in the country. Data used here was retrieved from the country’s official reports and published literatures. Access to modern cooking services in the country was particularly focused on and both biogas feedstock productivities and biogas processing efficiencies were calculated. Herfindahl Index (HI) was calculated to observe the change in the diversity of the total primary energy supply due to bioenergy in the country. Results indicated that only a few households, 10%, had access to modern bioenergy services. Less than 0.10% of households have a biogas digester. The HI values showed the low diversity of the energy supply and the very limited contribution of modern bioenergy. This synthesis indicated that the contribution of modern bioenergy to the energy supply of the country is very low. Very low difference was observed between Herfindahl Indexes with and without considering modern bioenergy in the total primary energy supply (TPES) of the country is also found to be insignificant. Results found indicated lower diversity of the energy supply of Ethiopia and very limited contribution of modern bioenergy to the diversity and security of the energy supply.


2016 ◽  
Vol 7 (1) ◽  
pp. 203-210 ◽  
Author(s):  
K. Frieler ◽  
M. Mengel ◽  
A. Levermann

Abstract. Even if greenhouse gas emissions were stopped today, sea level would continue to rise for centuries, with the long-term sea-level commitment of a 2 °C warmer world significantly exceeding 2 m. In view of the potential implications for coastal populations and ecosystems worldwide, we investigate, from an ice-dynamic perspective, the possibility of delaying sea-level rise by pumping ocean water onto the surface of the Antarctic ice sheet. We find that due to wave propagation ice is discharged much faster back into the ocean than would be expected from a pure advection with surface velocities. The delay time depends strongly on the distance from the coastline at which the additional mass is placed and less strongly on the rate of sea-level rise that is mitigated. A millennium-scale storage of at least 80 % of the additional ice requires placing it at a distance of at least 700 km from the coastline. The pumping energy required to elevate the potential energy of ocean water to mitigate the currently observed 3 mm yr−1 will exceed 7 % of the current global primary energy supply. At the same time, the approach offers a comprehensive protection for entire coastlines particularly including regions that cannot be protected by dikes.


2018 ◽  
Vol 7 (1.6) ◽  
pp. 20 ◽  
Author(s):  
Ansari Saleh Ahmar

Humans in this world are very dependent on petroleum and energy. Petroleum and other energies are a major source in supporting human life. Regarding the reduced petroleum availability, a new energy is needed to replace the role of petroleum. Nowadays, there is much renewable energy that have been discovered and used. The purpose of this research is to predict the total primary energy supply in Indonesia by using α-Sutte Indicator and ARIMA method, and comparing those four methods which are effective in predicting data. Data from the research is renewable energy (total primary energy supply) which is obtained from OECD from 1971-2015. From the research, it is found that the α-Sutte Indicator method is more suitable to predict renewable energy (total primary energy supply) data in Indonesia compared to ARIMA (0,1,0). 


Author(s):  
Milton Meckler

What does remain a growing concern for many users of Data Centers is their continuing availability following the explosive growth of internet services in recent years, The recent maximizing of Data Center IT virtualization investments has resulted in improving the consolidation of prior (under utilized) server and cabling resources resulting in higher overall facility utilization and IT capacity. It has also resulted in excessive levels of equipment heat release, e.g. high energy (i.e. blade type) servers and telecommunication equipment, that challenge central and distributed air conditioning systems delivering air via raised floor or overhead to rack mounted servers arranged in alternate facing cold and hot isles (in some cases reaching 30 kW/rack or 300 W/ft2) and returning via end of isle or separated room CRAC units, which are often found to fight each other, contributing to excessive energy use. Under those circumstances, hybrid, indirect liquid cooling facilities are often required to augment above referenced air conditioning systems in order to prevent overheating and degradation of mission critical IT equipment to maintain rack mounted subject rack mounted server equipment to continue to operate available within ASHRAE TC 9.9 prescribed task psychometric limits and IT manufacturers specifications, beyond which their operational reliability cannot be assured. Recent interest in new web-based software and secure cloud computing is expected to further accelerate the growth of Data Centers which according to a recent study, the estimated number of U.S. Data Centers in 2006 consumed approximately 61 billion kWh of electricity. Computer servers and supporting power infrastructure for the Internet are estimated to represent 1.5% of all electricity generated which along with aggregated IT and communications, including PC’s in current use have also been estimated to emit 2% of global carbon emissions. Therefore the projected eco-footprint of Data Centers into the future has now become a matter of growing concern. Accordingly our paper will focus on how best to improve the energy utilization of fossil fuels that are used to power Data Centers, the energy efficiency of related auxiliary cooling and power infrastructures, so as to reduce their eco-footprint and GHG emissions to sustainable levels as soon as possible. To this end, we plan to demonstrate significant comparative savings in annual energy use and reduction in associated annual GHG emissions by employing a on-site cogeneration system (in lieu of current reliance on remote electric power generation systems), introducing use of energy efficient outside air (OSA) desiccant assisted pre-conditioners to maintain either Class1, Class 2 and NEBS indoor air dew-points, as needed, when operated with modified existing (sensible only cooling and distributed air conditioning and chiller systems) thereby eliminating need for CRAC integral unit humidity controls while achieving a estimated 60 to 80% (virtualized) reduction in the number servers within a existing (hypothetical post-consolidation) 3.5 MW demand Data Center located in southeastern (and/or southern) U.S., coastal Puerto Rico, or Brazil characterized by three (3) representative microclimates ranging from moderate to high seasonal outside air (OSA) coincident design humidity and temperature.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Baraka Kichonge ◽  
Iddi S. N. Mkilaha ◽  
Geoffrey R. John ◽  
Sameer Hameer

The study analyzes the economics of renewable energy sources into electricity generation in Tanzania. Business as usual (BAU) scenario and renewable energy (RE) scenario which enforce a mandatory penetration of renewable energy sources shares into electricity generations were analyzed. The results show total investment cost for the BAU scenario is much lower as compared to RE scenario while operating and maintenance variable costs are higher in BAU scenario. Primary energy supply in BAU scenario is higher tied with less investment costs as compared to RE scenario. Furthermore, the share of renewable energy sources in BAU scenario is insignificant as compared to RE scenario due to mandatory penetration policy imposed. Analysis concludes that there are much higher investments costs in RE scenario accompanied with less operating and variable costs and lower primary energy supply. Sensitivity analysis carried out suggests that regardless of changes in investments cost of coal and CCGT power plants, the penetration of renewable energy technologies was still insignificant. Notwithstanding the weaknesses of renewable energy technologies in terms of the associated higher investments costs, an interesting result is that it is possible to meet future electricity demand based on domestic resources including renewables.


2018 ◽  
Vol 40 (3) ◽  
pp. 46-56
Author(s):  
B.I. Basok ◽  
E.T. Baseyev

The communal heat power engineering of Ukraine and its main area - the heat supply of the settlements of Ukraine - is the main consumer of primary energy resources (more than 60% of the total energy balance of the country, mainly imported natural gas). At the same time, this sector has the greatest potential for energy saving if measures and mechanisms are used to increase the efficiency of energy use, first of all with energy supply in buildings (thermal losses here reach up to 40%). Low energy efficiency of heat supply is the main reason for high tariffs for the consumer of housing and communal services and the challenge of social tension. Increasing energy efficiency is a basic condition for national economic, environmental and social stability, a requirement for the safety of life and a guarantee of the entire national security of the country. An overview of technological, organizational and socio-economic innovations for increasing energy efficiency of buildings is presented. Innovative equipment and technologies for increasing the energy efficiency of buildings and innovative engineering systems for their energy supply have been carried out at ITTP NAS of Ukraine. The method of determination of energy efficiency indicators of buildings, enclosing structures of buildings and the practice of conducting energy audits with the use of such diagnostic center measures as demonstration building of the "zero energy" constructed on the territory of ITT of NAS of Ukraine with energy supply from renewable energy sources (heat of soil, insolation, wind). Such a demonstration facility serves as a scientific and methodological center for training students of heat energy specialties, as well as the training of specialists involved in the development of energy efficient energy supply technologies for buildings and their energy audit. On the problems of increasing energy efficiency of the building sector in the near future, the main objectives of scientific research, subjects of fundamental, applied research, subjects, methods and tools of such research were determined.


2021 ◽  
Author(s):  
Luisa Vargas Suarez ◽  
Jason Donev

<p>There are extensive conceptual difficulties in understanding a country’s energy story. Every country in the world uses some combination of energy production, imports, and exports energy to meet their society’s needs. Thermal inefficiencies converting primary energy into electricity further confuse the issues. A visualization using large, publicly available data can help illustrate these different energy perspectives. This data visualization helps clarify the following perspectives: Production, Imports, Exports, Total Primary Energy Supply (TPES), Total Final Consumption (TFC), and the conversion losses from turning TPES into TFC. TPES refers to the total amount of energy a country obtains directly from natural resources such as fossil fuels or wind. TFC refers to the addition of the all energy directly consumed by a user for an energy service such as electricity for lighting in a house. This paper discusses the interactive simulation that was built to allow users to explore the composition of a country’s energy production, imports and exports through the conversion into energy people consume. The simulation allows users to explore the energy stories for different countries, and how these change over the decades.</p>


Sign in / Sign up

Export Citation Format

Share Document