Intensity Models

Author(s):  
James B. Elsner ◽  
Thomas H. Jagger

Strong hurricanes, such as Camille in 1969, Andrew in 1992, and Katrina in 2005, cause catastrophic damage. It is important to have an estimate of when the next big one will occur. You also want to know what influences the strongest hurricanes and whether they are getting stronger as the earth warms. This chapter shows you how to model hurricane intensity. The data are basinwide lifetime highest intensities for individual tropical cyclones over the North Atlantic and county-level hurricane wind intervals. We begin by considering trends using the method of quantile regression and then examine extreme-value models for estimating return periods. We also look at modeling cyclone winds when the values are given by category, and use Miami-Dade County as an example. Here you consider cyclones above tropical storm intensity (≥ 17 m s−1) during the period 1967–2010, inclusive. The period is long enough to see changes but not too long that it includes intensity estimates before satellite observations. We use “intensity” and “strength” synonymously to mean the fastest wind inside the cyclone. Consider the set of events defined by the location and wind speed at which a tropical cyclone first reaches its lifetime maximum intensity (see Chapter 5). The data are in the file LMI.txt. Import and list the values in 10 columns of the first 6 rows of the data frame by typing . . . > LMI.df = read.table("LMI.txt", header=TRUE) > round(head(LMI.df)[c(1, 5:9, 12, 16)], 1). . . The data set is described in Chapter 6. Here your interest is the smoothed intensity estimate at the time of lifetime maximum (WmaxS). First, convert the wind speeds from the operational units of knots to the SI units of meter per second. . . . > LMI.df$WmaxS = LMI.df$WmaxS * .5144 . . . Next, determine the quartiles (0.25 and 0.75 quantiles) of the wind speed distribution. The quartiles divide the cumulative distribution function (CDF) into three equal-sized subsets. . . . > quantile(LMI.df$WmaxS, c(.25, .75)) 25% 75% 25.5 46.0 . . . You find that 25 percent of the cyclones have a lifetime maximum wind speed less than 26 m s−1 and 75 percent have a maximum wind speed less than 46ms−1, so that 50 percent of all cyclones have a maximum wind speed between 26 and 46 m s−1 (interquartile range–IQR).

2017 ◽  
Author(s):  
Ari K. Venäläinen ◽  
Mikko O. Laapas ◽  
Pentti I. Pirinen ◽  
Matti Horttanainen ◽  
Reijo Hyvönen ◽  
...  

Abstract. The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In a forested country, such as Finland, over 50 % of its current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high spatial resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. Coarse spatial resolution estimates of the return levels of maximum wind speed based, e.g., on reanalysed meteorological data or climate scenarios can be downscaled to forest stand levels with the help of land cover and terrain elevation data. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 meter spatial resolution CORINE-land use dataset and high resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalysed data. These data were downscaled to 26 meteorological station locations to represent very diverse environments: Open Baltic Sea islands, agricultural land, forested areas, and Northern Finland treeless fells. Applying a comparison, the downscaled 10-year return levels explained 77 % of the observed variation among the stations examined. In addition, the spatial variation of wind multiplier downscaled 10-year return level wind was compared with the WAsP- model simulated wind. The heterogeneous test area was situated in Northern Finland, and it was found that the major features of the spatial variation were similar, but in the details, there were relatively large differences. However, for areas representing a typical Finnish forested landscape with no major topographic variation, both of the methods produced very similar results. Further fine-tuning of wind multipliers could improve the downscaling for the locations with large topographic variation. However, the current results already indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations having the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.


2013 ◽  
Vol 6 (4) ◽  
pp. 7945-7984 ◽  
Author(s):  
G.-J. van Zadelhoff ◽  
A. Stoffelen ◽  
P. W. Vachon ◽  
J. Wolfe ◽  
J. Horstmann ◽  
...  

Abstract. Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind speed conditions. European satellite scatterometers have excellent hurricane penetration capability at C-band, but the vertically (VV) polarized signals become insensitive above 25 m s−1. VV and VH polarized backscatter signals from RADARSAT-2 SAR imagery acquired during severe hurricane events were compared to collocated SFMR wind measurements acquired by NOAA's hurricane-hunter aircraft. From this data set a Geophysical Model Function (GMF) at strong-to-extreme/severe wind speeds (i.e. 20 m s−1 < U10 < 45 m s−1) is derived. Within this wind speed regime, cross-polarized data showed no distinguishable loss of sensitivity and as such, cross-polarized data can be considered a good candidate for the retrieval of strong-to-severe wind speeds from satellite instruments. The upper limit of 45 m s−1 is defined by the currently available collocated data. The validity of the derived relationship between wind speed and VH has been evaluated by comparing the cross polarized signals to two independent wind speed datasets, i.e. short-range ECMWF Numerical Weather Prediction (NWP) model forecast winds and the NOAA best estimate one-minute maximum sustained winds. Analysis of the three comparison data sets confirm that cross-polarized signals from satellites will enable the retrieval of strong-to-severe wind speeds where VV or horizontal (HH) polarization data has saturated. The VH backscatter increases exponentially with respect to wind speed (linear against VH [dB]) and a near real time assessment of maximum sustained wind speed is possible using VH measurements. VH measurements thus would be an extremely valuable complement on next-generation scatterometers for Hurricane forecast warnings and hurricane model initialization.


2008 ◽  
Vol 23 (4) ◽  
pp. 758-761 ◽  
Author(s):  
Shyamnath Veerasamy

Abstract In their study on the wind–pressure relationship (WPR) that exists in tropical cyclones, Knaff and Zehr presented results of the use of the Dvorak Atlantic WPR for estimating central pressure and maximum wind speed of tropical cyclones. These show some fairly large departures of estimated central pressure and maximum surface winds from observed values. Based on a study carried out in the southwest Indian Ocean (SWIO), it is believed that improvements in the use of the Dvorak WPR can be achieved by using the size of a closed isobar (it is the 1004-hPa closed isobar in the SWIO) to determine whether to use the North Atlantic (NA), the western North Pacific (WNP), or a mean of the NA and WNP Dvorak WPR for estimating central pressure and maximum wind speed in tropical cyclones.


2017 ◽  
Vol 8 (3) ◽  
pp. 529-545 ◽  
Author(s):  
Ari Venäläinen ◽  
Mikko Laapas ◽  
Pentti Pirinen ◽  
Matti Horttanainen ◽  
Reijo Hyvönen ◽  
...  

Abstract. The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.


2021 ◽  
Vol 13 (15) ◽  
pp. 2902
Author(s):  
Yuan Gao ◽  
Jie Zhang ◽  
Jian Sun ◽  
Changlong Guan

The spaceborne synthetic aperture radar (SAR) is an effective tool to observe tropical cyclone (TC) wind fields at very high spatial resolutions. TC wind speeds can be retrieved from cross-polarization signals without wind direction inputs. This paper proposed methodologies to retrieve TC intensity parameters; for example, surface maximum wind speed, TC fullness (TCF) and central surface pressure from the European Space Agency Sentinel-1 Extra Wide swath mode cross-polarization data. First, the MS1A geophysical model function was modified from 6 to 69 m/s, based on three TC samples’ SAR images and the collocated National Oceanic and Atmospheric Administration stepped frequency microwave radiometer wind speed measurements. Second, we retrieved the wind fields and maximum wind speeds of 42 TC samples up to category 5 acquired in the last five years, using the modified MS1A model. Third, the TCF values and central surface pressures were calculated from the 1-km wind retrievals, according to the radial curve fitting of wind speeds and two hurricane wind-pressure models. Three intensity parameters were found to be dependent upon each other. Compared with the best-track data, the averaged bias, correlation coefficient (Cor) and root mean-square error (RMSE) of the SAR-retrieved maximum wind speeds were –3.91 m/s, 0.88 and 7.99 m/s respectively, showing a better result than the retrievals before modification. For central pressure, the averaged bias, Cor and RMSE were 1.17 mb, 0.77 and 21.29 mb and respectively, indicating the accuracy of the proposed methodology for pressure retrieval. Finally, a new symmetric TC wind field model was developed with the fitting function of the TCF values and maximum wind speeds, radial wind curve and the Rankine Vortex model. By this model, TC wind field can be simulated just using the maximum wind speed and the radius of maximum wind speed. Compared with wind retrievals, averaged absolute bias and averaged RMSE of all samples’ wind fields simulated by the new model were smaller than those of the Rankine Vortex model.


2014 ◽  
Vol 7 (2) ◽  
pp. 437-449 ◽  
Author(s):  
G.-J. van Zadelhoff ◽  
A. Stoffelen ◽  
P. W. Vachon ◽  
J. Wolfe ◽  
J. Horstmann ◽  
...  

Abstract. Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind-speed conditions. European satellite scatterometers have excellent hurricane penetration capability at C-band, but the vertically (VV) polarized signals become insensitive above 25 m s−1. VV and VH polarized backscatter signals from RADARSAT-2 SAR imagery acquired during severe hurricane events were compared to collocated SFMR wind measurements acquired by NOAA's hurricane-hunter aircraft. From this data set a geophysical model function (GMF) at strong-to-extreme/severe wind speeds (i.e., 20 m s−1 < U10 < 45 m s−1) is derived. Within this wind speed regime, cross-polarized data showed no distinguishable loss of sensitivity and as such, cross-polarized data can be considered a good candidate for the retrieval of strong-to-severe wind speeds from satellite instruments. The upper limit of 45 m s−1 is defined by the currently available collocated data. The validity of the derived relationship between wind speed and VH backscatter has been evaluated by comparing the cross-polarized signals to two independent wind-speed data sets (i.e., short-range ECMWF numerical weather prediction (NWP) model forecast winds and the NOAA best estimate 1-minute maximum sustained winds). Analysis of the three comparison data sets confirm that cross-polarized signals from satellites will enable the retrieval of strong-to-severe wind speeds where VV or horizontal (HH) polarization data has saturated. The VH backscatter increases exponentially with respect to wind speed (linear against VH [dB]) and a near-real-time assessment of maximum sustained wind speed is possible using VH measurements. VH measurements thus would be an extremely valuable complement on next-generation scatterometers for hurricane forecast warnings and hurricane model initialization.


2021 ◽  
Vol 6 (6) ◽  
pp. 1501-1519
Author(s):  
Ida Marie Solbrekke ◽  
Asgeir Sorteberg ◽  
Hilde Haakenstad

Abstract. We validate a new high-resolution (3 km) numerical mesoscale weather simulation for offshore wind power purposes for the time period 2004–2016 for the North Sea and the Norwegian Sea. The 3 km Norwegian reanalysis (NORA3) is a dynamically downscaled data set, forced with state-of-the-art atmospheric reanalysis as boundary conditions. We conduct an in-depth validation of the simulated wind climatology towards the observed wind climatology to determine whether NORA3 can serve as a wind resource data set in the planning phase of future offshore wind power installations. We place special emphasis on evaluating offshore wind-power-related metrics and the impact of simulated wind speed deviations on the estimated wind power and the related variability. We conclude that the NORA3 data are well suited for wind power estimates but give slightly conservative estimates of the offshore wind metrics. In other words, wind speeds in NORA3 are typically 5 % (0.5 m s−1) lower than observed wind speeds, giving an underestimation of offshore wind power of 10 %–20 % (equivalent to an underestimation of 3 percentage points in the capacity factor) for a selected turbine type and hub height. The model is biased towards lower wind power estimates due to overestimation of the wind speed events below typical wind speed limits of rated wind power (u<11–13 m s−1) and underestimation of high-wind-speed events (u>11–13 m s−1). The hourly wind speed and wind power variability are slightly underestimated in NORA3. However, the number of hours with zero power production caused by the wind conditions (around 12 % of the time) is well captured, while the duration of each of these events is slightly overestimated, leading to 25-year return values for zero-power duration being too high for the majority of the sites. The model performs well in capturing spatial co-variability in hourly wind power production, with only small deviations in the spatial correlation coefficients among the sites. We estimate the observation-based decorrelation length to be 425.3 km, whereas the model-based length is 19 % longer.


OALib ◽  
2021 ◽  
Vol 08 (12) ◽  
pp. 1-22
Author(s):  
Enoch O. Elemo ◽  
Efua A. Ogobor ◽  
George A. Alagbe ◽  
Benjamin G. Ayantunji ◽  
Otonye E. Mangete ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document