Time Series Models

Author(s):  
James B. Elsner ◽  
Thomas H. Jagger

In this chapter, we consider time series models. A time series is an ordered sequence of numbers with respect to time. In climatology, you encounter time-series data in a format given by . . . {h}Tt=1 = {h1,h2,. . . ,hT} (10.1) . . . where the time t is over a given season, month, week, or day and T is the time series length. The aim is to understand the underlying physical processes that produced the series. A trend is an example. Often by simply looking at a time series plot, you can pick out a trend that tells you that the process generating the data is changing. A single time series gives you a sample from the process. Yet under the ergodic hypothesis, a single time series of infinite length contains the same information (loosely speaking) as the collection of all possible series of finite length. In this case, you can use your series to learn about the nature of the process. This is analogous to spatial interpolation encountered in Chapter 9, where the variogram was computed under the assumption that the rainfall field is stationary. Here we consider a selection of techniques and models for time series data. We begin by showing you how to overlay plots as a tool for exploratory analysis. This is done to compare the variation between two series qualitatively. We demonstrate large variation in hurricane counts arising from a constant rate process. We then show techniques for smoothing. We continue with a change-point model and techniques for decomposing a continuous-valued series. We conclude with a unique way to create a network graph from a time series of counts and suggest a new definition of a climate anomaly. A plot showing your variables on a common time axis is an informative exploratory graph. Values from two different series are scaled to have the same relative range so the covariation in the variables can be compared visually. Here you do this with hurricane counts and sea-surface temperature (SST). Begin by loading annual.RData. These data were assembled in Chapter 6.

2014 ◽  
Vol 23 (2) ◽  
pp. 213-229 ◽  
Author(s):  
Cangqi Zhou ◽  
Qianchuan Zhao

AbstractMining time series data is of great significance in various areas. To efficiently find representative patterns in these data, this article focuses on the definition of a valid dissimilarity measure and the acceleration of partitioning clustering, a common group of techniques used to discover typical shapes of time series. Dissimilarity measure is a crucial component in clustering. It is required, by some particular applications, to be invariant to specific transformations. The rationale for using the angle between two time series to define a dissimilarity is analyzed. Moreover, our proposed measure satisfies the triangle inequality with specific restrictions. This property can be employed to accelerate clustering. An integrated algorithm is proposed. The experiments show that angle-based dissimilarity captures the essence of time series patterns that are invariant to amplitude scaling. In addition, the accelerated algorithm outperforms the standard one as redundancies are pruned. Our approach has been applied to discover typical patterns of information diffusion in an online social network. Analyses revealed the formation mechanisms of different patterns.


2017 ◽  
Author(s):  
Easton R White

Long-term time series are necessary to better understand population dynamics, assess species' conservation status, and make management decisions. However, population data are often expensive, requiring a lot of time and resources. When is a population time series long enough to address a question of interest? We determine the minimum time series length required to detect significant increases or decreases in population abundance. To address this question, we use simulation methods and examine 878 populations of vertebrate species. Here we show that 15-20 years of continuous monitoring are required in order to achieve a high level of statistical power. For both simulations and the time series data, the minimum time required depends on trend strength, population variability, and temporal autocorrelation. These results point to the importance of sampling populations over long periods of time. We argue that statistical power needs to be considered in monitoring program design and evaluation. Time series less than 15-20 years are likely underpowered and potentially misleading.


2002 ◽  
Vol 18 (2) ◽  
pp. 278-296 ◽  
Author(s):  
Katsuto Tanaka

The measurement error problem that we consider in this paper is concerned with the situation where time series data of various kinds—short memory, long memory, and random walk processes—are contaminated by white noise. We suggest a unified approach to testing for the existence of such noise. It is found that the power of our test crucially depends on the underlying process.


Author(s):  
Isra Al-Turaiki ◽  
Fahad Almutlaq ◽  
Hend Alrasheed ◽  
Norah Alballa

COVID-19 is a disease-causing coronavirus strain that emerged in December 2019 that led to an ongoing global pandemic. The ability to anticipate the pandemic’s path is critical. This is important in order to determine how to combat and track its spread. COVID-19 data is an example of time-series data where several methods can be applied for forecasting. Although various time-series forecasting models are available, it is difficult to draw broad theoretical conclusions regarding their relative merits. This paper presents an empirical evaluation of several time-series models for forecasting COVID-19 cases, recoveries, and deaths in Saudi Arabia. In particular, seven forecasting models were trained using autoregressive integrated moving average, TBATS, exponential smoothing, cubic spline, simple exponential smoothing Holt, and HoltWinters. The models were built using publicly available daily data of COVID-19 during the period of 24 March 2020 to 5 April 2021 reported in Saudi Arabia. The experimental results indicate that the ARIMA model had a smaller prediction error in forecasting confirmed cases, which is consistent with results reported in the literature, while cubic spline showed better predictions for recoveries and deaths. As more data become available, a fluctuation in the forecasting-accuracy metrics was observed, possibly due to abrupt changes in the data.


Author(s):  
Ahmad Zaki ◽  
Wahidah Sanusi ◽  
Saiful Bahri

Abstrak. Curah hujan merupakan suatu data deret waktu yang bersifat kontinu, namun juga dapat diformulasikan sebagai peubah diskrit yaitu dengan menggolongkan suatu hari menjadi hujan dan tidak hujan. Curah hujan yang dicatat oleh pos hujan dapat digunakan untuk memprediksi curah hujan pada waktu yang akan datang melalui pemodelan deret waktu ARIMA musiman, Rantai Markov atau dengan campuran keduanya. Proses Markov merupakan suatu sistem stokastik di mana kejadian di masa yang akan datang bergantung pada kejadian sesaat sebelumnya Deret waktu merupakan serangkaian data yang disusun menurut urutan waktu Tujuan penelitian ini adalah untuk memodelkan dan memprediksi curah hujan dengan campuran Rantai Markov dan model deret waktu. Data yang digunakan dalam penelitian ini adalah curah hujan bulanan kota Makassar tahun 2007 sampai 2017. Campuran model deret waktu lebih sesuai digunakan untuk memprediksi curah hujan bulanan dibandingkan dengan pemodelan deret waktu saja hal ini dapat dilihat dai nilai MSE.Kata Kunci: Rantai Markov, Deret Waktu, ARIMA MusimanAbstract. Rainfall is a time series data that is continuous, but can also be formulated as a discrete variable that is by classifying one day as rainy and not rainy. Rainfall recorded by rain posts can be used to predict rainfall in the future through seasonal ARIMA time series modeling, Markov Chain or with a mixture of both. The Markov process is a stochastic system in which future events depend on the events of the previous moment. The time series is a series of data arranged in time sequence. The purpose of this study is to model and predict rainfall with a mixture of Markov Chains and time series models. The data used in this study is the monthly rainfall of Makassar city in 2007 to 2017. A mixture of time series models is more suitable to be used to predict monthly rainfall compared to modeling time series. This can be seen from the MSE value.Keywords: Markov chain, Time Series, seasonal ARIMA.


Risks ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 198
Author(s):  
Nataliya Chukhrova ◽  
Arne Johannssen

Often, the claims reserves exceed the available equity of non-life insurance companies and a change in the claims reserves by a small percentage has a large impact on the annual accounts. Therefore, it is of vital importance for any non-life insurer to handle claims reserving appropriately. Although claims data are time series data, the majority of the proposed (stochastic) claims reserving methods is not based on time series models. Among the time series models, state space models combined with Kalman filter learning algorithms have proven to be very advantageous as they provide high flexibility in modeling and an accurate detection of the temporal dynamics of a system. Against this backdrop, this paper aims to provide a comprehensive review of stochastic claims reserving methods that have been developed and analyzed in the context of state space representations. For this purpose, relevant articles are collected and categorized, and the contents are explained in detail and subjected to a conceptual comparison.


2021 ◽  
Vol 17 (4) ◽  
pp. 306-320
Author(s):  
Rahmah Mohd Lokoman ◽  
Fadhilah Yusof ◽  
Nor Eliza Alias ◽  
Zulkifli Yusop

Copula model has applied in various hydrologic studies, however, most analyses conducted does not considering the non-stationary conditions that may exist in the time series. To investigate the dependence structure between two rainfall stations at Johor Bahru, two methods have been applied. The first method considers the non-stationary condition that exists in the data, while the second method assumes stationarity in the time series data.  Through goodness-off-fit (GOF) and simulation tests, performance of both methods are compared in this study. The results obtained in this study highlight the importance of considering non-stationarity conditions in the hydrological data.


2020 ◽  
Author(s):  
Jonas M B Haslbeck ◽  
Oisín Ryan

Idiographic modeling is rapidly gaining popularity and promises to tap into the within-person dynamics underlying psychological phenomena. To gain theoretical understanding of these dynamics, we need to make inferences from time series models about the underlying system. Such inferences are subject to two challenges: the time series models will arguably always be misspecified, which means that it is unclear how to make inferences to the underlying system; and second, the sampling frequency must be sufficient to capture the dynamics of interest. We discuss both problems with the following approach: we specify a toy model for emotion dynamics as the true system, generate time series data from it, and then try to recover that system with the most popular time series analysis tools. We show that making straightforward inferences from time series models about an underlying system is difficult. We also show that if the sampling frequency is insufficient, the dynamics of interest cannot be recovered. However, we also show that global characteristics of the system can be recovered reliably. We conclude by discussing the consequences of our findings for idiographic modeling and suggest to adopt a modeling methodology that goes beyond fitting time series models alone.


2019 ◽  
Author(s):  
A.A. Arkilanian ◽  
C.F. Clements ◽  
A. Ozgul ◽  
G. Baruah

AbstractNatural populations are increasingly threatened with collapse at the hands of anthropogenic effects. Predicting population collapse with the help of generic early warning signals (EWS) may provide a prospective tool for identifying species or populations at highest risk. However, pattern-to-process methods such as EWS have a multitude of challenges to overcome to be useful, including the low signal to noise ratio of ecological systems and the need for high quality time-series data. The inclusion of trait dynamics with EWS has been proposed as a more robust tool to predict population collapse. However, the length and resolution of available time series are highly variable from one system to another, especially when generation time is considered. As yet it remains unknown how this variability with regards to generation time will alter the efficacy of EWS. Here we take both a simulation- and experimental-based approach to assess the impacts of relative time-series length and resolution on the forecasting ability of EWS. We show that EWS’ performance decreases with decreasing length and resolution. Our simulations suggest a relative time-series length between ten and five generations and a resolution of half a generation are the minimum requirements for accurate forecasting by abundance-based EWS. However, when trait information is included alongside abundance-based EWS, we find positive signals at lengths and resolutions half of what was required without them. We suggest that, in systems where specific traits are known to affect demography, trait data should be monitored and included alongside abundance data to improve forecasting reliability.


Sign in / Sign up

Export Citation Format

Share Document