Business Applications of Fuzzy Logic

Author(s):  
Petr Dostál ◽  
Chia-Yang Lin

The chapter focuses on the use of fuzzy logic, or soft computing, among the different methods used as supports for decision making in business applications. The processes are focused on private corporate attempts at making money or decreasing expenses; therefore, the details of applications, successful or not, are not published very often. Fuzzy logic helps in decentralization of decisionmaking processes that are to be standardized, reproduced, and documented. Fuzzy logic plays very important roles, especially in business, because it helps reduce costs. It differs from conventional (hard) computing in that it is tolerant of imprecision, uncertainty, partial truth, and approximation. In effect, the role model for fuzzy logic is the human mind. The guiding principle of fuzzy logic is to exploit this tolerance to achieve tractability, robustness, and low solution cost.

Author(s):  
Matthew N. O. Sadiku ◽  
Yonghui Wang ◽  
Suxia Cui ◽  
Sarhan M. Musa

Soft computing (SC) is a newly emerging multidisciplinary field. It is a collection of computational techniques, such as expert systems, fuzzy logic, neural networks, and evolutionary algorithms, which provide information processing capabilities to solve complex practical problems. The major benefit of SC lies in its ability to tolerate imprecision, uncertainty, partial truth, and approximation in processing imprecise and inaccurate information and simulating human decision making at low cost. This paper provides a brief introduction on soft computing.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2617
Author(s):  
Catalin Dumitrescu ◽  
Petrica Ciotirnae ◽  
Constantin Vizitiu

When considering the concept of distributed intelligent control, three types of components can be defined: (i) fuzzy sensors which provide a representation of measurements as fuzzy subsets, (ii) fuzzy actuators which can operate in the real world based on the fuzzy subsets they receive, and, (iii) the fuzzy components of the inference. As a result, these elements generate new fuzzy subsets from the fuzzy elements that were previously used. The purpose of this article is to define the elements of an interoperable technology Fuzzy Applied Cell Control-soft computing language for the development of fuzzy components with distributed intelligence implemented on the DSP target. The cells in the network are configured using the operations of symbolic fusion, symbolic inference and fuzzy–real symbolic transformation, which are based on the concepts of fuzzy meaning and fuzzy description. The two applications presented in the article, Agent-based modeling and fuzzy logic for simulating pedestrian crowds in panic decision-making situations and Fuzzy controller for mobile robot, are both timely. The increasing occurrence of panic moments during mass events prompted the investigation of the impact of panic on crowd dynamics and the simulation of pedestrian flows in panic situations. Based on the research presented in the article, we propose a Fuzzy controller-based system for determining pedestrian flows and calculating the shortest evacuation distance in panic situations. Fuzzy logic, one of the representation techniques in artificial intelligence, is a well-known method in soft computing that allows the treatment of strong constraints caused by the inaccuracy of the data obtained from the robot’s sensors. Based on this motivation, the second application proposed in the article creates an intelligent control technique based on Fuzzy Logic Control (FLC), a feature of intelligent control systems that can be used as an alternative to traditional control techniques for mobile robots. This method allows you to simulate the experience of a human expert. The benefits of using a network of fuzzy components are not limited to those provided distributed systems. Fuzzy cells are simple to configure while also providing high-level functions such as mergers and decision-making processes.


Author(s):  
Petr Dostál

The decision-making processes in management are very complicated because they include political, social, psychological, economic, financial, and other factors. Many variables are difficult to measure; they may be characterized by imprecision, uncertainty, vagueness, semi-truth, approximations, and so forth. Soft computing methods have had successful applications in management. Nowadays the new theories of soft computing are used for these purposes. The applications in management have specific features in comparison with others. The processes are focused on private corporate attempts at money making or decreasing expenses. The soft computing methods help in decentralization of decision-making processes to be standardized, reproduced, and documented. There are various soft computing methods used in management-classical ones and methods using soft computing. Among soft computing methods there belongs fuzzy logic, neural networks, and evolutionary algorithms. The use of the theories mentioned previous is important also in the sphere of analysis and simulation. The case studies are discussed in the article. It can be mentioned, for example, which way should be used to address the potential customer (fuzzy logic), which kind of customer could be provided by a loan or a mortgage (neural networks), the sorting of products according to the kind of customers (genetic algorithms), or solving the travelling salesman problem (evolutionary algorithms).


2016 ◽  
pp. 1541-1579
Author(s):  
Petr Dostál

The decision-making processes in management are very complicated because they include political, social, psychological, economic, financial, and other factors. Many variables are difficult to measure; they may be characterized by imprecision, uncertainty, vagueness, semi-truth, approximations, and so forth. Soft computing methods have had successful applications in management. Nowadays the new theories of soft computing are used for these purposes. The applications in management have specific features in comparison with others. The processes are focused on private corporate attempts at money making or decreasing expenses. The soft computing methods help in decentralization of decision-making processes to be standardized, reproduced, and documented. There are various soft computing methods used in management-classical ones and methods using soft computing. Among soft computing methods there belongs fuzzy logic, neural networks, and evolutionary algorithms. The use of the theories mentioned previous is important also in the sphere of analysis and simulation. The case studies are discussed in the article. It can be mentioned, for example, which way should be used to address the potential customer (fuzzy logic), which kind of customer could be provided by a loan or a mortgage (neural networks), the sorting of products according to the kind of customers (genetic algorithms), or solving the travelling salesman problem (evolutionary algorithms).


2012 ◽  
pp. 444-466
Author(s):  
Amine Chohra ◽  
Nadia Kanaoui ◽  
Véronique Amarger ◽  
Kurosh Madani

Fault diagnosis is a complex and fuzzy cognitive process, and soft computing methods and technologies based on Neural Networks (NN) and Fuzzy Logic (FL), have shown great potential in the development of Decision Support Systems (DSS). Dealing with expert (human) knowledge consideration, Computer Aided Diagnosis (CAD) dilemma is one of the most interesting, but also one of the most difficult problems. Among difficulties contributing to challenging nature of this problem, one can mention the need of fine pattern recognition (classification) and decision-making. This Chapter deals with classification and decision-making based on Artificial Intelligence using multiple model approaches under soft computing implying modular Neural Networks (NN) and Fuzzy Logic (FL) for biomedical and industrial applications. The aim of this Chapter is absolutely not to replace specialized human but to suggest decision support tools: hybrid intelligent diagnosis systems with a satisfactory reliability degree for CAD. In this Chapter, a methodology is given in order to design hybrid intelligent diagnosis systems for a large field of biomedical and industrial applications. For this purpose, first, a survey on diagnosis tasks in such applications is presented. Second, fault diagnosis systems are presented. Third, the main steps of hybrid intelligent diagnosis systems are developed, for each step emphasizing problems and suggesting solutions able to ensure the design of hybrid intelligent diagnosis systems with a satisfactory reliability degree. In fact, the main steps discussed are knowledge representation, classification, classifier issued information fusion, and decision-making. Then, the suggested approach is developed for a CAD in biomedicine, from Auditory Brainstem Response (ABR) test, and the prototype design and experimental results are presented. Finally, a discussion is given with regard to the reliability and large application field of the suggested approach.


Author(s):  
Amine Chohra ◽  
Nadia Kanaoui ◽  
Véronique Amarger ◽  
Kurosh Madani

Fault diagnosis is a complex and fuzzy cognitive process, and soft computing methods and technologies based on Neural Networks (NN) and Fuzzy Logic (FL), have shown great potential in the development of Decision Support Systems (DSS). Dealing with expert (human) knowledge consideration, Computer Aided Diagnosis (CAD) dilemma is one of the most interesting, but also one of the most difficult problems. Among difficulties contributing to challenging nature of this problem, one can mention the need of fine pattern recognition (classification) and decision-making. This Chapter deals with classification and decision-making based on Artificial Intelligence using multiple model approaches under soft computing implying modular Neural Networks (NN) and Fuzzy Logic (FL) for biomedical and industrial applications. The aim of this Chapter is absolutely not to replace specialized human but to suggest decision support tools: hybrid intelligent diagnosis systems with a satisfactory reliability degree for CAD. In this Chapter, a methodology is given in order to design hybrid intelligent diagnosis systems for a large field of biomedical and industrial applications. For this purpose, first, a survey on diagnosis tasks in such applications is presented. Second, fault diagnosis systems are presented. Third, the main steps of hybrid intelligent diagnosis systems are developed, for each step emphasizing problems and suggesting solutions able to ensure the design of hybrid intelligent diagnosis systems with a satisfactory reliability degree. In fact, the main steps discussed are knowledge representation, classification, classifier issued information fusion, and decision-making. Then, the suggested approach is developed for a CAD in biomedicine, from Auditory Brainstem Response (ABR) test, and the prototype design and experimental results are presented. Finally, a discussion is given with regard to the reliability and large application field of the suggested approach.


Informatica ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Javier Albadán ◽  
Paulo Gaona ◽  
Carlos Montenegro ◽  
Rubén González-Crespo ◽  
Enrique Herrera-Viedma

2008 ◽  
Vol 63 (3) ◽  
pp. 607-608
Author(s):  
Csaba Pléh

ErősFerenc, LénárdKataés BókayAntal(szerk.) Typus Budapestiensis. Tanulmányok a pszichoanalízis budapesti iskolájának történetéről éshatásáról. Thalassa, Budapest, 2008, 447 oldalHargittaiIstván: Doktor DNS. Őszinte beszélgetések James D. Watsonnal. Vince Kiadó, Budapest, 2008, 223 oldalKutrovátzGábor,LángBenedekésZemplénGábor: A tudomány határa. Typotex,Budapest, 2008, 376 oldalEngerl, C. andSinger, W. (eds) Better than conscious? Decision making, the human mind, and implications for institutions . MIT Press, Cambridge, 2008, xiv + 449 oldalKondor, Zsuzsanna: Embedded thinking. Multimedia and the new rationality. Peter Lang, Frankfurt am Main, 2008, xi + 169 oldalSíklakiIstván(szerk.): Szóbeli befolyásolás. I–II. Typotex, Budapest,_n


Author(s):  
Sri Handayani Sianipar ◽  
Fince Tinus Waruwu ◽  
Lince Tomoria Sianturi

Ulos batak toba is one of indonesia traditional fabric, precisely the traditional cloth of the batak toba. From time to time the ulos fabric was growing in terms of  type and motif. One of the companies that produces ulos batak is cv. Ala dos roha. The authors conducted this study aimed at predicting the amount of production of ulos batak to produced later. The author uses the previous request, inventory and production data using fuzzy logic tsukamoto. The final result of the calculation with this method will be more effective and efficient so as to speed up the decision making time to predict the amount of production to be produced next.Keywords: prediction, amount of  production, method of tsukamoto


2016 ◽  
Vol 7 (1) ◽  
pp. 12-18
Author(s):  
Joko Haryanto ◽  
Seng Hansun

This paper describes the development of decision support system application to assist students who want to enter college so that no one choose the majors incorrectly. This application uses fuzzy logic method because fuzzy logic is very flexible in data which are vague and can be represented as a linguistic variable. The purpose of this application is to assist students to choose available majors at University Multimedia Nusantara which are appropriate with his/her capabilities. This application accepts five kinds of input values i.e. Mathematics, Indonesian, English, Physics, and TIK. Received input will be processed by the calculation of the system for decision-making and the application will generate output that shows how great a match for each majors. With this application, prospective students can find out where the majors that match his/her capabilities. This application has ninety nine percentage of match result accuracy. Index Terms—fuzzy logic, decision support system, UMN, selection of major


Sign in / Sign up

Export Citation Format

Share Document