A Truncated Bacillus subtilis SecA Protein Consisting of the N-Terminal 234 Amino Acid Residues Forms a Complex with Escherichia coli SecA51(ts) Protein and Complements the Protein Translocation Defect of the secA51 Mutant1

1994 ◽  
Vol 116 (6) ◽  
pp. 1287-1294 ◽  
Author(s):  
Hiromu Takamatsu ◽  
Akitaka Nakane ◽  
Akihiro Oguro ◽  
Yoshito Sadaie ◽  
Kouji Nakamura ◽  
...  
1989 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
T. S. Grewal ◽  
P. J. Lowry ◽  
D. Savva

ABSTRACT A large portion of the human pro-opiomelanocortin (POMC) peptide corresponding to amino acid residues 59–241 has been cloned and expressed in Escherichia coli. A 1·0 kb DNA fragment encoding this peptide was cloned into the expression vectors pUC8 and pUR291. Plasmid pJMBG51 (a pUC8 recombinant) was found to direct the expression of a 24 kDa peptide. The recombinant pUR291 (pJMBG52) was shown to produce a β-galactosidase fusion protein of 140 kDa. Western blot analysis showed that both the 24 kDa and 140 kDa peptides are recognized by antibodies raised against POMC-derived peptides. The β-galactosidase fusion protein has been partially purified from crude E. coli cell lysates using affinity chromatography on p-aminobenzyl-1-thio-β-d-galactopyranoside agarose.


2006 ◽  
Vol 34 (1) ◽  
pp. 118-121 ◽  
Author(s):  
E.J. Dridge ◽  
D.J. Richardson ◽  
R.J. Lewis ◽  
C.S. Butler

The AF0174–AF0176 gene cluster in Archaeoglobus fulgidus encodes a putative oxyanion reductase of the D-type (Type II) family of molybdo-enzymes. Sequence analysis reveals that the catalytic subunit AF0176 shares low identity (31–32%) and similarity (41–42%) to both NarG and SerA, the catalytic components of the respiratory nitrate and selenate reductases respectively. Consequently, predicting the oxyanion substrate selectivity of AF0176 has proved difficult based solely on sequence alignments. In the present study, we have modelled both AF0176 and SerA on the recently determined X-ray structure of the NAR (nitrate reductase) from Escherichia coli and have identified a number of key amino acid residues, conserved in all known NAR sequences, including AF0176, that we speculate may enhance selectivity towards trigonal planar (NO3−) rather than tetrahedral (SeO42− and ClO4−) substrates.


2003 ◽  
Vol 185 (9) ◽  
pp. 2811-2819 ◽  
Author(s):  
Natascha Blaudeck ◽  
Peter Kreutzenbeck ◽  
Roland Freudl ◽  
Georg A. Sprenger

ABSTRACT In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the “Sec avoidance signal,” the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.


1971 ◽  
Vol 227 (1) ◽  
pp. 171-179 ◽  
Author(s):  
Yoshihisa Nishimura ◽  
Hiroshi Makino ◽  
Osamu Takenaka ◽  
Yuji Inada

2002 ◽  
Vol 76 (11) ◽  
pp. 5829-5834 ◽  
Author(s):  
Yoshio Mori ◽  
Mohammed Ali Borgan ◽  
Naoto Ito ◽  
Makoto Sugiyama ◽  
Nobuyuki Minamoto

ABSTRACT Avian rotavirus NSP4 glycoproteins expressed in Escherichia coli acted as enterotoxins in suckling mice, as did mammalian rotavirus NSP4 glycoproteins, despite great differences in the amino acid sequences. The enterotoxin domain of PO-13 NSP4 exists in amino acid residues 109 to 135, a region similar to that reported in SA11 NSP4.


1996 ◽  
Vol 40 (9) ◽  
pp. 2152-2159 ◽  
Author(s):  
S M Hosseini-Mazinani ◽  
E Nakajima ◽  
Y Ihara ◽  
K Z Kameyama ◽  
K Sugimoto

Proteus vulgaris and RTEM-1 beta-lactamases that belong to molecular class A with 37% amino acid similarity were examined to find the relationship between amino acid residues and activity of enzymes. MICs of ampicillin were > 2,000 micrograms/ml for Escherichia coli cells producing these enzymes. We have made 18 hybrid genes by substituting the coding region of the P. vulgaris beta-lactamase gene with the equivalent portions from the RTEM-1 gene. Most of these hybrids produced inactive proteins, but a few hybrid enzymes had partial or trace activity. From one of the hybrid genes (MIC of ampicillin, 100 micrograms/ml), we recovered three kinds of active mutants which provided ampicillin MICs of 1,000 micrograms/ml by the selection of spontaneous mutations in a dnaQ strain of E. coli. In these mutants, Leu-148, Met-182, and Tyr-274 were replaced with Val, Thr, and His, respectively. These amino acids have not been identified as residues with functional roles in substrate hydrolysis. Furthermore, from these hybrid mutants, we obtained a second set of mutants which conferred ampicillin MICs of 1,500 micrograms/ml. Interestingly, the second mutations were limited to these three amino acid substitutions. These amino acid residues which do not directly interact with substrates have an effect on enzyme activity. These mutant enzymes exhibited lower K(m) values for cephaloridine than both parental enzymes.


Sign in / Sign up

Export Citation Format

Share Document