Enzyme Properties of Aplysia ADP-Ribosyl Cyclase: Comparison with NAD Glycohydrolase of CD38 Antigen1

1995 ◽  
Vol 117 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Kiyoshi Inageda ◽  
Katsunobu Takahashi ◽  
Ken-ichi Tokita ◽  
Hiroshi Nishina ◽  
Yasunori Kanaho ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6154 ◽  
Author(s):  
Ivan Koludarov ◽  
Steven D. Aird

NAD glycohydrolase (EC 3.2.2.5) (NADase) sequences have been identified in 10 elapid and crotalid venom gland transcriptomes, eight of which are complete. These sequences show very high homology, but elapid and crotalid sequences also display consistent differences. As in Aplysia kurodai ADP-ribosyl cyclase and vertebrate CD38 genes, snake venom NADase genes comprise eight exons; however, in the Protobothrops mucrosquamatus genome, the sixth exon is sometimes not transcribed, yielding a shortened NADase mRNA that encodes all six disulfide bonds, but an active site that lacks the catalytic glutamate residue. The function of this shortened protein, if expressed, is unknown. While many vertebrate CD38s are multifunctional, liberating both ADP-ribose and small quantities of cyclic ADP-ribose (cADPR), snake venom CD38 homologs are dedicated NADases. They possess the invariant TLEDTL sequence (residues 144–149) that bounds the active site and the catalytic residue, Glu228. In addition, they possess a disulfide bond (Cys121–Cys202) that specifically prevents ADP-ribosyl cyclase activity in combination with Ile224, in lieu of phenylalanine, which is requisite for ADPR cyclases. In concert with venom phosphodiesterase and 5′-nucleotidase and their ecto-enzyme homologs in prey tissues, snake venom NADases comprise part of an envenomation strategy to liberate purine nucleosides, and particularly adenosine, in the prey, promoting prey immobilization via hypotension and paralysis.


1998 ◽  
Vol 330 (3) ◽  
pp. 1383-1390 ◽  
Author(s):  
Valérie BERTHELIER ◽  
Jean-Michel TIXIER ◽  
Hélène MULLER-STEFFNER ◽  
Francis SCHUBER ◽  
Philippe DETERRE

The leucoyte surface antigen CD38 has been shown to be an ecto-enzyme with multiple catalytic activities. It is principally a NAD+ glycohydrolase that transforms NAD+ into ADP-ribose and nicotinamide. CD38 is also able to produce small amounts of cyclic ADP-ribose (ADP-ribosyl cyclase activity) and to hydrolyse this cyclic metabolite into ADP-ribose (cyclic ADP-ribose hydrolase activity). To classify CD38 among the enzymes that transfer the ADP-ribosyl moiety of NAD+ to a variety of acceptors, we have investigated its substrate specificity and some characteristics of its kinetic and molecular mechanisms. We find that CD38-catalysed cleavage of the nicotinamide-ribose bond results in the formation of an E·ADP-ribosyl intermediary complex, which is common to all reaction pathways; this intermediate reacts (1) with acceptors such as water (hydrolysis), methanol (methanolysis) or pyridine (transglycosidation), and (2) intramolecularly, yielding cyclic ADP-ribose with a low efficiency. This reaction scheme is also followed when using nicotinamide guanine dinucleotide as an alternative substrate; in this case, however, the cyclization process is highly favoured. The results obtained here are not compatible with the prevailing model for the mode of action of CD38, according to which this enzyme produces first cyclic ADP-ribose which is then immediately hydrolysed into ADP-ribose (i.e. sequential ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities). We show instead that the cyclic metabolite was a reaction product of CD38 rather than an obligatory reaction intermediate during the glycohydrolase activity. Altogether our results lead to the conclusion that CD38 is an authentic ‘classical’ NAD(P)+ glycohydrolase (EC 3.2.2.6).


2006 ◽  
Vol 18 (7) ◽  
pp. 1029-1042 ◽  
Author(s):  
Frances E. Lund ◽  
Hélène Muller-Steffner ◽  
Héctor Romero-Ramirez ◽  
Miguel E. Moreno-García ◽  
Santiago Partida-Sánchez ◽  
...  

2000 ◽  
Vol 349 (1) ◽  
pp. 203-210 ◽  
Author(s):  
Céline CAKIR-KIEFER ◽  
Hélène MULLER-STEFFNER ◽  
Francis SCHUBER

Highly purified Aplysia californica ADP-ribosyl cyclase was found to be a multifunctional enzyme. In addition to the known transformation of NAD+ into cADP-ribose this enzyme is able to catalyse the solvolysis (hydrolysis and methanolysis) of cADP-ribose. This cADP-ribose hydrolase activity, which becomes detectable only at high concentrations of the enzyme, is amplified with analogues such as pyridine adenine dinucleotide, in which the cleavage rate of the pyridinium-ribose bond is much reduced compared with NAD+. Although the specificity ratio Vmax/Km is in favour of NAD+ by 4 orders of magnitude, this multifunctionality allowed us to propose a ‘partitioning’ reaction scheme for the Aplysia enzyme, similar to that established previously for mammalian CD38/NAD+ glycohydrolases. This mechanism involves the formation of a single oxocarbenium-type intermediate that partitions to cADP-ribose and solvolytic products via competing pathways. In favour of this mechanism was the finding that the enzyme also catalysed the hydrolysis of NMN+, a substrate that cannot undergo cyclization. The major difference between the mammalian and the invertebrate enzymes resides in their relative cyclization/hydrolysis rate-constant ratios, which dictate their respective yields of cADP-ribose (ADP-ribosyl cyclase activity) and ADP-ribose (NAD+ glycohydrolase activity). For the Aplysia enzyme's catalysed transformation of NAD+ we favour a mechanism where the formation of cADP-ribose precedes that of ADP-ribose; i.e. macroscopically the invertebrate ADP-ribosyl cyclase conforms to a sequential reaction pathway as a limiting form of the partitioning mechanism.


2003 ◽  
Vol 278 (42) ◽  
pp. 40670-40678 ◽  
Author(s):  
Claire Ceni ◽  
Hélène Muller-Steffner ◽  
Frances Lund ◽  
Nathalie Pochon ◽  
Annie Schweitzer ◽  
...  

1996 ◽  
Vol 271 (22) ◽  
pp. 12951-12955 ◽  
Author(s):  
Miki Hara-Yokoyama ◽  
Iwao Kukimoto ◽  
Hiroshi Nishina ◽  
Kenji Kontani ◽  
Yoshio Hirabayashi ◽  
...  

1997 ◽  
Vol 326 (2) ◽  
pp. 401-405 ◽  
Author(s):  
Mathias ZIEGLER ◽  
Dierk JORCKE ◽  
Manfred SCHWEIGER

The present investigation identifies bovine liver mitochondrial NADase (NAD+ glycohydrolase) as a member of the class of bifunctional ADP-ribosyl cyclases/cyclic ADP-ribose hydrolases, known to be potential second messenger enzymes. These enzymes catalyse the synthesis and degradation of cyclic ADP-ribose, a potent intracellular calcium-mobilizing agent. The mitochondrial enzyme utilized the NAD+ analogues nicotinamide guanine dinucleotide (NGD+) and nicotinamide hypoxanthine dinucleotide (NHD+) to form fluorescent cyclic purine nucleoside diphosphoriboses. ADP-ribosyl cyclase activity was also demonstrated using 32P-labelled NAD+ as substrate. The identity of NADase and ADP-ribosyl cyclase was supported by their co-migration in SDS/polyacrylamide gels. Cyclase activity was visualized directly within the gel by detecting the formation of fluorescent cyclic IDP-ribose from NHD+. The enzyme catalysed the hydrolysis of cyclic ADP-ribose to ADP-ribose. Moreover, in the presence of nicotinamide and cyclic ADP-ribose the enzyme synthesized NAD+. Both the ADP-ribosyl cyclase and NADase activities of the enzyme were strongly inhibited by reducing agents. Treatment of the NADase with dithiothreitol caused the apparent inactivation of the enzyme. Subsequent removal of the reducing agent and addition of oxidized glutathione led to a partial recovery of enzymic activity. The results support a model for pro-oxidant-induced calcium release from mitochondria involving cyclic ADP-ribose as a specific messenger, rather than the non-enzymic modification of proteins by ADP-ribose.


2003 ◽  
Vol 370 (1) ◽  
pp. 175-183 ◽  
Author(s):  
Claire CENI ◽  
Nathalie POCHON ◽  
Virginie BRUN ◽  
Hélène MULLER-STEFFNER ◽  
Annie ANDRIEUX ◽  
...  

CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38-/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide—guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38-/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue.


Sign in / Sign up

Export Citation Format

Share Document