nad glycohydrolase
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 14)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
pp. JN-RM-2264-20
Author(s):  
Monica R. Langley ◽  
Chan-Il Choi ◽  
Thais R. Peclat ◽  
Yong Guo ◽  
Whitney Simon ◽  
...  

2021 ◽  
Author(s):  
Nicholas D Peterson ◽  
Janneke D. Icso ◽  
J. Elizabeth Salisbury ◽  
Tomas C Rodriguez ◽  
Paul Thompson ◽  
...  

Intracellular signaling regulators can be concentrated into membrane-free, higher-ordered protein assemblies to initiate protective responses during stress - a process known as phase transition. Here, we show that a phase transition of the C. elegans Toll/interleukin-1 receptor domain protein (TIR-1), a homolog of the mammalian sterile alpha and TIR motif-containing 1 (SARM1), primes host immune defenses when dietary sterols are limited to handle subsequent bacterial infection. TIR-1/SARM1 is an upstream component of the p38 PMK-1 pathway in intestinal cells, an innate immune defense and stress response pathway in metazoans. Under conditions of low cholesterol availability, multimerization and precipitation of TIR-1/SARM1 potentiates the intrinsic NAD+ glycohydrolase activity of this protein complex, increases p38 PMK-1 phosphorylation, and promotes pathogen clearance from the intestine. Dietary cholesterol is required for C. elegans to survive infection with pathogenic bacteria and to support development, fecundity, and lifespan. Thus, activation of the p38 PMK-1 pathway in sterol-deficient animals is an adaptive response that allows a metazoan host to anticipate environmental threats under conditions of essential metabolite scarcity.


Author(s):  
Kazunori Murase ◽  
Chihiro Aikawa ◽  
Takashi Nozawa ◽  
Ayako Nakatake ◽  
Kuniyo Sakamoto ◽  
...  

Most bacteria naturally release spherical lipid-bilayered extracellular vesicles (EVs) containing proteins, nucleic acids, and virulence-related molecules, thus contributing to diverse biological functions including transport of virulence factors. The group A streptococcus, Streptococcus pyogenes (GAS), a major human pathogen, also releases EVs; however, it remains unclear how GAS EVs interact physiologically and pathologically with host cells, and what the differences are between invasive and non-invasive strains. The proteome profile in this study revealed that GAS EVs enclosed many virulence-related proteins such as streptolysin O and NAD-glycohydrolase, facilitating their pathogenicity, and invasive GAS EVs were more abundant than non-invasive counterparts. In terms of biological effects, invasive GAS EVs showed slo-dependent cytotoxic activity and the induction of cytokine expression, contributing to GAS pathogenicity directly. Although non-invasive GAS EVs did not show cytotoxic activity, they may be utilized as a means to prevent antibacterial mechanisms such as autophagy, leading to enhancement of their own survival in the intracellular environment after the infection. These results suggest that invasive and non-invasive GAS EVs play different roles in GAS infection strategy and pathogenicity. Our findings also indicate that EVs could be a key factor for GAS pathogenicity in GAS-host interactions.


2021 ◽  
Author(s):  
Carlo Angeletti ◽  
Adolfo Amici ◽  
Jonathan Gilley ◽  
Andrea Loreto ◽  
Antonio G Trapanotto ◽  
...  

SARM1 is an NAD glycohydrolase and TLR adapter with an essential, prodegenerative role in programmed axon death (Wallerian degeneration). It has low basal NADase activity that becomes strongly activated by NAD precursor NMN. Very high levels of NAD oppose this activation, competing for the same allosteric site on SARM1′s regulatory ARM domain. Injury or diseases that deplete axons of NMNAT2, an essential enzyme converting NMN to NAD, cause SARM1 activation. The resulting NAD degradation by SARM1, combined with loss of NAD synthesis by NMNAT2, causes rapid depletion of axonal NAD. This NAD loss is widely assumed to mediate axon death and is consequently a key focus for therapeutic strategies for axonopathies. However, like other NAD(P) glycohydrolases, SARM1 has additional enzyme activities whose contributions, consequences and regulation need to be fully understood. Here, we compare the multiple actions and regulation of recombinant human SARM1 with those of two other NAD(P) glycohydrolases, human CD38 and Aplysia californica ADP ribosyl cyclase. We find that SARM1 has the highest transglycosidation (base exchange) activity of these enzymes at neutral pH and with some bases this dominates NAD(P) hydrolysis and cyclisation. Moreover, like its NADase and NADPase reactions, SARM1-mediated base exchange at neutral pH is activated by increases in the NMN:NAD ratio, which we show for the first time can act in the presence of physiological levels of both metabolites. We establish that SARM1 base exchange is the most likely physiological source of calcium mobilizing agent NaADP, and potentially of other NAD(P) analogues, which could contribute to axon and cell death. We also identify regulatory effects of free pyridine bases, of NADP and of nicotinic acid riboside (NaR) on SARM1 that represent further therapeutic opportunities. These data will help to pinpoint which of the multiple functions of SARM1 is responsible for axon degeneration and how it can be optimally targeted to block axon degeneration in disease.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Heather S Loring ◽  
Victoria L Czech ◽  
Janneke D Icso ◽  
Lauren O'Connor ◽  
Sangram S Parelkar ◽  
...  

Sterile alpha and toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) is a neuronally expressed NAD+ glycohydrolase whose activity is increased in response to stress. NAD+ depletion triggers axonal degeneration, which is a characteristic feature of neurological diseases. Notably, loss of SARM1 is protective in murine models of peripheral neuropathy and traumatic brain injury. Herein, we report that citrate induces a phase transition that enhances SARM1 activity by ~2000-fold. This phase transition can be disrupted by mutating a residue involved in multimerization, G601P. This mutation also disrupts puncta formation in cells. We further show that citrate induces axonal degeneration in C. elegans that is dependent on the C. elegans orthologue of SARM1 (TIR-1). Notably, citrate induces the formation of larger puncta indicating that TIR-1/SARM1 multimerization is essential for degeneration in vivo. These findings provide critical insights into SARM1 biology with important implications for the discovery of novel SARM1-targeted therapeutics.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sanyog Dwivedi ◽  
Erika P. Rendón-Huerta ◽  
Vianney Ortiz-Navarrete ◽  
Luis F. Montaño

Cancer is a leading cause of death worldwide. Understanding the functional mechanisms associated with metabolic reprogramming, which is a typical feature of cancer cells, is key to effective therapy. CD38, primarily a NAD + glycohydrolase and ADPR cyclase, is a multifunctional transmembrane protein whose abnormal overexpression in a variety of tumor types is associated with cancer progression. It is linked to VEGFR2 mediated angiogenesis and immune suppression as it favors the recruitment of suppressive immune cells like Tregs and myeloid-derived suppressor cells, thus helping immune escape. CD38 is expressed in M1 macrophages and in neutrophil and T cell-mediated immune response and is associated with IFNγ-mediated suppressor activity of immune responses. Targeting CD38 with anti-CD38 monoclonal antibodies in hematological malignancies has shown excellent results. Bearing that in mind, targeting CD38 in other nonhematological cancer types, especially carcinomas, which are of epithelial origin with specific anti-CD38 antibodies alone or in combination with immunomodulatory drugs, is an interesting option that deserves profound consideration.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takashi Nozawa ◽  
Junpei Iibushi ◽  
Hirotaka Toh ◽  
Atsuko Minowa-Nozawa ◽  
Kazunori Murase ◽  
...  

ABSTRACT Group A Streptococcus (GAS; Streptococcus pyogenes) is a major human pathogen that causes streptococcal pharyngitis, skin and soft tissue infections, and life-threatening conditions such as streptococcal toxic-shock syndrome. During infection, GAS not only invades diverse host cells but also injects effector proteins such as NAD-glycohydrolase (Nga) into the host cells through a streptolysin O (SLO)-dependent mechanism without invading the cells; Nga and SLO are two major virulence factors that are associated with increased bacterial virulence. Here, we have shown that the invading GAS induces fragmentation of the Golgi complex and inhibits anterograde transport in the infected host cells through the secreted toxins SLO and Nga. GAS infection-induced Golgi fragmentation required both bacterial invasion and SLO-mediated Nga translocation into the host cytosol. The cellular Golgi network is critical for the sorting of surface molecules and is thus essential for the integrity of the epithelial barrier and for the immune response of macrophages to pathogens. In epithelial cells, inhibition of anterograde trafficking by invading GAS and Nga resulted in the redistribution of E-cadherin to the cytosol and an increase in bacterial translocation across the epithelial barrier. Moreover, in macrophages, interleukin-8 secretion in response to GAS infection was found to be suppressed by intracellular GAS and Nga. Our findings reveal a previously undescribed bacterial invasion-dependent function of Nga as well as a previously unrecognized GAS-host interaction that is associated with GAS pathogenesis. IMPORTANCE Two prominent virulence factors of group A Streptococcus (GAS), streptolysin O (SLO) and NAD-glycohydrolase (Nga), are linked to enhanced pathogenicity of the prevalent GAS strains. Recent advances show that SLO and Nga are important for intracellular survival of GAS in epithelial cells and macrophages. Here, we found that invading GAS disrupts the Golgi complex in host cells through SLO and Nga. We show that GAS-induced Golgi fragmentation requires bacterial invasion into host cells, SLO pore formation activity, and Nga NADase activity. GAS-induced Golgi fragmentation results in the impairment of the epithelial barrier and chemokine secretion in macrophages. This immune inhibition property of SLO and Nga by intracellular GAS indicates that the invasion of GAS is associated with virulence exerted by SLO and Nga.


2020 ◽  
Author(s):  
Takashi Nozawa ◽  
Junpei Iibushi ◽  
Hirotaka Toh ◽  
Atsuko Minowa-Nozawa ◽  
Kazunori Murase ◽  
...  

AbstractGroup A Streptococcus (GAS; Streptococcus pyogenes) is a major human pathogen that causes streptococcal pharyngitis, skin and soft-tissue infections, and life-threatening conditions such as streptococcal toxic-shock syndrome. During infection, GAS not only invades diverse host cells, but also injects effector proteins such as NAD-glycohydrolase (Nga) into the host cells through a streptolysin O (SLO)-dependent mechanism without invading the cells; Nga and SLO are two major virulence factors that are associated with increased bacterial virulence. Here, we have shown that the invading GAS induces fragmentation of the Golgi complex and inhibits anterograde transport in the infected host cells through the secreted toxins SLO and Nga. GAS infection-induced Golgi fragmentation required both bacterial invasion and SLO-mediated Nga translocation into the host cytosol. The cellular Golgi network is critical for the sorting of surface molecules and thus is essential for epithelial barrier integrity and the immune response of macrophages to pathogens. In epithelial cells, inhibition of anterograde trafficking by invading GAS and Nga resulted in the redistribution of E-cadherin to the cytosol and an increase in bacterial translocation across the epithelial barrier. Moreover, in macrophages, interleukin-8 secretion in response to GAS infection was found to be suppressed by intracellular GAS and Nga. Our findings reveal a previously undescribed bacterial invasion-dependent function of Nga as well as a previously unrecognized GAS-host interaction that is associated GAS pathogenesis.ImportanceTwo prominent virulence factors of GAS, SLO and Nga, have been established to be linked to enhanced pathogenicity of prevalent GAS strains. Recent advances show that SLO and Nga are important for intracellular survival of GAS in epithelial cells and macrophages. Here, we found that invading GAS disrupt the Golgi complex in host cells by SLO and Nga. We showed that GAS-induced Golgi fragmentation requires bacterial invasion into host cells, SLO pore-formation activity, and Nga NADase activity. GAS-induced Golgi fragmentation resulted in the impairment of epithelial barrier and chemokine secretion in macrophages. This immune inhibition property of SLO and Nga by intracellular GAS indicates that the invasion of GAS is associated with virulence exerted by SLO and Nga.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1716
Author(s):  
Anwesha Kar ◽  
Shikhar Mehrotra ◽  
Shilpak Chatterjee

Activation and subsequent differentiation of T cells following antigenic stimulation are triggered by highly coordinated signaling events that lead to instilling cells with a discrete metabolic and transcriptional feature. Compelling studies indicate that intracellular nicotinamide adenine dinucleotide (NAD+) levels have profound influence on diverse signaling and metabolic pathways of T cells, and hence dictate their functional fate. CD38, a major mammalian NAD+ glycohydrolase (NADase), expresses on T cells following activation and appears to be an essential modulator of intracellular NAD+ levels. The enzymatic activity of CD38 in the process of generating the second messenger cADPR utilizes intracellular NAD+, and thus limits its availability to different NAD+ consuming enzymes (PARP, ART, and sirtuins) inside the cells. The present review discusses how the CD38-NAD+ axis affects T cell activation and differentiation through interfering with their signaling and metabolic processes. We also describe the pivotal role of the CD38-NAD+ axis in influencing the chromatin remodeling and rewiring T cell response. Overall, this review emphasizes the crucial contribution of the CD38−NAD+ axis in altering T cell response in various pathophysiological conditions.


Sign in / Sign up

Export Citation Format

Share Document