Spatial distribution of dihydropyridine receptors in the plasma membrane of guinea pig cardiac myocytes investigated by correlative confocal microscopy and label-fracture electron microscopy

1997 ◽  
Vol 46 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Y. Takagishi ◽  
S. Rothery ◽  
J. Issbemer ◽  
A. Levi ◽  
N. J. Severs
2000 ◽  
Vol 279 (6) ◽  
pp. C1963-C1969 ◽  
Author(s):  
Yoshiko Takagishi ◽  
Kenji Yasui ◽  
Nicholas J. Severs ◽  
Yoshiharu Murata

Ca2+influx via sarcolemmal voltage-dependent Ca2+ channels (L-type Ca2+ channels) is the fundamental step in excitation-contraction (E-C) coupling in cardiac myocytes. Physiological and pharmacological studies reveal species-specific differences in E-C coupling resulting from a difference in the contribution of Ca2+ influx and intracellular Ca2+ release to activation of contraction. We investigated the distribution of L-type Ca2+ channels in isolated cardiac myocytes from rabbit and rat ventricle by correlative immunoconfocal and immunogold electron microscopy. Immunofluorescence labeling revealed discrete spots in the surface plasma membrane and transverse (T) tubules in rabbit myocytes. In rat myocytes, labeling appeared more intense in T tubules than in the surface sarcolemma. Immunogold electron microscopy extended these findings, showing that the number of gold particles in the surface plasma membrane was significantly higher in rabbit than rat myocytes. In rabbit myocyte plasma membrane, the gold particles were distributed as clusters in both regions that were associated with junctional sarcoplasmic reticulum and those that were not. The findings are consistent with the idea that influx of Ca2+ via surface sarcolemmal Ca2+ channels contributes to intracellular Ca2+ to a greater degree in rabbit than in rat myocytes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 327-327
Author(s):  
Ngozi A Wilkins ◽  
Brian Storrie ◽  
Jeffrey A Kamykowski

Abstract Abstract 327 Background: Platelets, anucleated cells that play a critical role in blood clotting, store proteins and small molecules in alpha-granules and dense granules, respectively, for secretion. Alpha-granules contain several proteins including von Willebrand factor and fibrinogen and dense granules contain serotonin. Rab4, a marker for the early endosomes has been implicated in regulating alpha granule secretions (Sirakawa et al, 2010). Previous fluorescence microscopy mapping of alpha-granule protein distributions suggested that there are either two different alpha-granule types or subdomains within a single granule population (Storrie and Seghal, 2007; Italiano et al, 2008). More recent work based on electron tomography (Kamykowski et al, manuscript in preparation) indicates that human platelets are comprised of one alpha granule population. We hypothesized that there was a single population of alpha-granules in which all fibrinogen is similarly compartmentalized. Hence, fibrinogen endocytocized by guinea pig megakaryocytes and platelets in vivo at 4 h (short label) and 24 h (long label) would map to the same location. Aims: We carried out several experiments to form a basis for future high-resolution (5 nm) electron tomography to establish packaging of HRP-conjugated fibrinogen or nanogold conjugated fibrinogen into platelet alpha-granules. (a) Using PD-10 columns, we prepared Cy3 conjugated fibrinogen. Using an in vivo guinea pig model to test the ability of guinea pig platelets to take up fluorescently labeled fibrinogen, we injected 10 mg/ml of Cy3 conjugated fibrinogen (short label, 4 h) and 10 mg/ml of commercially purchased AlexaFluor 488 conjugated fibrinogen (long label, 28 h) into guinea pigs. Platelets were then fixed, purified and confocal microscopy performed. (b) Using triple immunofluorescence, serotonin antibody was applied to fixed and purified resting state human and guinea pig platelets and immunofluorescence microscopy was performed to provide whole platelet information on the staining pattern of the dense granules in comparison to the alpha-granules and early endosomes. (c) Preliminary Electron Microscopy fixation conditions were also tested on guinea pig platelets. Results: For the uptake experiment, spinning-disk confocal microscopy was used to collect full platelet volume image stacks which were then deconvolved, pixel shift corrected for red and green channels and analyzed. Overlap of green and red fibrinogen conjugates was observed where the fluorescently tagged fibrinogens were taken up by structures presumed to be alpha-granules. For the triple labeling experiments, the distribution of serotonin, Rab4 and von Willebrand factor was observed in resting state platelets. Using spinning-disk confocal microscopy, full platelet volume image stacks were collected, deconvolved, pixel shift corrected for red, far red and green channels and analyzed. Serotonin antibody gave an abundant punctate staining pattern in both the triple-labeled human and guinea pig platelets. In both the human platelets and the guinea pig platelets, the serotonin positive punctate granules, presumed to be dense granules, had a more similar pattern to the von Willebrand factor positive punctate alpha granules, than to the Rab4 positive punctate granules, presumed to be the early endosomes. The triple label results were unexpected because previous electron microscopy studies have indicated that the dense granules in human platelets are fewer in number than the alpha-granules and fewer than the corresponding dense granules in guinea pig platelets. Results of the electron microscopy preparations are pending. Conclusions: Our results indicate that the guinea pig model, while its platelets are a much smaller size than human platelets, is a good system for loading alpha-granules with labeled proteins for electron tomography. The serotonin distribution results together with previous electron tomography also raise the question as to whether dense granules could be a specialized form of the alpha-granules. A summary of this research will be presented at the Promoting Minorities in Hematology event during the 2010 ASH meeting. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 83 (3) ◽  
pp. 611-621 ◽  
Author(s):  
Gaie Brown ◽  
James Aitken ◽  
Helen W. McL. Rixon ◽  
Richard J. Sugrue

We have employed immunofluorescence microscopy and transmission electron microscopy to examine the assembly and maturation of respiratory syncytial virus (RSV) in the Vero cell line C1008. RSV matures at the apical cell surface in a filamentous form that extends from the plasma membrane. We observed that inclusion bodies containing viral ribonucleoprotein (RNP) cores predominantly appeared immediately below the plasma membrane, from where RSV filaments form during maturation at the cell surface. A comparison of mock-infected and RSV-infected cells by confocal microscopy revealed a significant change in the pattern of caveolin-1 (cav-1) fluorescence staining. Analysis by immuno-electron microscopy showed that RSV filaments formed in close proximity to cav-1 clusters at the cell surface membrane. In addition, immuno-electron microscopy showed that cav-1 was closely associated with early budding RSV. Further analysis by confocal microscopy showed that cav-1 was subsequently incorporated into the envelope of RSV filaments maturing on the host cell membrane, but was not associated with other virus structures such as the viral RNPs. Although cav-1 was incorporated into the mature virus, it was localized in clusters rather than being uniformly distributed along the length of the viral filaments. Furthermore, when RSV particles in the tissue culture medium from infected cells were examined by immuno-negative staining, the presence of cav-1 on the viral envelope was clearly demonstrated. Collectively, these findings show that cav-1 is incorporated into the envelope of mature RSV particles during egress.


2002 ◽  
Vol 282 (6) ◽  
pp. F998-F1011 ◽  
Author(s):  
Tian-Xiao Sun ◽  
Alfred Van Hoek ◽  
Yan Huang ◽  
Richard Bouley ◽  
Margaret McLaughlin ◽  
...  

Before the identification of aquaporin (AQP) proteins, vasopressin-regulated “water channels” were identified by freeze-fracture electron microscopy as aggregates or clusters of intramembraneous particles (IMPs) on hormonally stimulated target cell membranes. In the kidney collecting duct, these IMP clusters were subsequently identified as possible sites of clathrin-coated pit formation on the plasma membrane, and a clathrin-mediated mechanism for internalization of vasopressin-sensitive water channels was suggested. Using an antibody raised against the extracellular C loop of AQP2, we now provide direct evidence that AQP2 is concentrated in clathrin-coated pits on the apical surface of collecting duct principal cells. Furthermore, by using a fracture-label technique applied to LLC-PK1cells expressing an AQP2- c-myc construct, we show that AQP2 is located in IMP aggregates and is concentrated in shallow membrane invaginations on the surface of forskolin-stimulated cells. We also studied the functional role of clathrin-coated pits in AQP2 trafficking by using a GTPase-deficient dynamin mutation (K44A) to inhibit clathrin-mediated endocytosis. Immunofluorescence labeling and freeze-fracture electron microscopy showed that dominant-negative dynamin 1 and dynamin 2 mutants prevent the release of clathrin-coated pits from the plasma membrane and induce an accumulation of AQP2 on the plasma membrane of AQP2-transfected cells. These data provide the first direct evidence that AQP2 is located in clathrin-coated pits and show that AQP2 recycles between the plasma membrane and intracellular vesicles via a dynamin-dependent endocytotic pathway. We propose that the IMP clusters previously associated with vasopressin action represent sites of dynamin-dependent, clathrin-mediated endocytosis in which AQP2 is concentrated before internalization.


Author(s):  
T. G. Sarphie ◽  
C. R. Comer ◽  
D. J. Allen

Previous ultrastructural studies have characterized surface morphology during norma cell cycles in an attempt to associate specific changes with specific metabolic processes occurring within the cell. It is now known that during the synthetic ("S") stage of the cycle, when DNA and other nuclear components are synthesized, a cel undergoes a doubling in volume that is accompanied by an increase in surface area whereby its plasma membrane is elaborated into a variety of processes originally referred to as microvilli. In addition, changes in the normal distribution of glycoproteins and polysaccharides derived from cell surfaces have been reported as depreciating after cellular transformation by RNA or DNA viruses and have been associated with the state of growth, irregardless of the rate of proliferation. More specifically, examination of the surface carbohydrate content of synchronous KB cells were shown to be markedly reduced as the cell population approached division Comparison of hamster kidney fibroblasts inhibited by vinblastin sulfate while in metaphase with those not in metaphase demonstrated an appreciable decrease in surface carbohydrate in the former.


Sign in / Sign up

Export Citation Format

Share Document