Diurnal Changes of Rhabdom Structures in the Compound Eye of the Grapsid Crab, Hemigrapsus penicillatus

1940 ◽  
Vol 78 (1) ◽  
pp. 42-52 ◽  
Author(s):  
THEODORE LOUIS JAHN ◽  
FREDERICK CRESCITELLI

1986 ◽  
Vol 123 (1) ◽  
pp. 1-26
Author(s):  
TAKAHIKO HARIYAMA ◽  
V. BENNO MEYER-ROCHOW ◽  
EISUKE EGUCHI

The ultrastructure of the retinula cells of Ligia exotica changes diurnally and in response to light/dark adaptation. At the low phase of electroretinogram (ERG) amplitude (at noon), the arrangement of microvilli is ordered and the rhabdom is of the open type. An irregular arrangement of microvilli appears at the high phase of ERG amplitude (at midnight), when the rhabdom is of the closed type. The pigment granules disperse at midnight and assemble at noon. A centrally positioned, spikeproducing eccentric cell is present in each ommatidium. Spectral response curves based on ERG measurements have two maxima, one to light of 383 nm wavelength, the other at around 520 nm. These two peaks represent the two classes of receptor cells identified by intracellular recordings. The ERG responses to light of 383 nm and 520 nm wavelengths display a diurnal rhythmicity, being high at night and low during the day. However, the responses to green light are more strongly affected than those to ultraviolet light. Consequently, the eye displays a relatively higher ultraviolet-sensitivity during the day, whereas at night sensitivity to green light is increased. This behaviour, which persists in continuous darkness, suggests that an endogenous mechanism is involved in bringing about the observed diurnal morphological and physiological changes in the compound eye of Ligia exotica.


2011 ◽  
Vol 366 (1565) ◽  
pp. 680-687 ◽  
Author(s):  
Uwe Homberg ◽  
Stanley Heinze ◽  
Keram Pfeiffer ◽  
Michiyo Kinoshita ◽  
Basil el Jundi

Many animals rely on a sun compass for spatial orientation and long-range navigation. In addition to the Sun, insects also exploit the polarization pattern and chromatic gradient of the sky for estimating navigational directions. Analysis of polarization–vision pathways in locusts and crickets has shed first light on brain areas involved in sky compass orientation. Detection of sky polarization relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Brain areas involved in polarization processing include parts of the lamina, medulla and lobula of the optic lobe and, in the central brain, the anterior optic tubercle, the lateral accessory lobe and the central complex. In the optic lobe, polarization sensitivity and contrast are enhanced through convergence and opponency. In the anterior optic tubercle, polarized-light signals are integrated with information on the chromatic contrast of the sky. Tubercle neurons combine responses to the UV/green contrast and e-vector orientation of the sky and compensate for diurnal changes of the celestial polarization pattern associated with changes in solar elevation. In the central complex, a topographic representation of e-vector tunings underlies the columnar organization and suggests that this brain area serves as an internal compass coding for spatial directions.


1997 ◽  
Vol 200 (18) ◽  
pp. 2387-2392
Author(s):  
A Matsushita ◽  
K Arikawa

In the crab Hemigrapsus sanguineus, maintained under a 12 h:12 h light:dark cycle, the amount of vesicular smooth endoplasmic reticulum (vesicular sER) in the photoreceptor cell body increases after the light is turned off. This paper demonstrates that actin filaments in the photoreceptor cell body are involved in the transport of vesicular sER towards the rhabdom. To specify the time of actin contribution to rhabdom synthesis, we disrupted the organization of actin filaments in the cell body with cytochalasin D at various time around dusk. We then measured the rhabdom size and also examined the ultrastructure of the photoreceptor cell body 3 h after extinguishing the light. When cytochalasin D was applied from either 1 h before or immediately after extinguishing the light, the rhabdom size did not increase, whereas vesicular sER accumulated in the cell body. In contrast, cytochalasin D applied to the eyes from 20 min after turning the light off did not inhibit rhabdom synthesis. These results indicate that the first 20 min after the light is turned off is particularly important for the transport of vesicular sER towards the rhabdom by the cell body actin filaments.


Author(s):  
E. R. Macagno ◽  
C. Levinthal

The optic ganglion of Daphnia Magna, a small crustacean that reproduces parthenogenetically contains about three hundred neurons: 110 neurons in the Lamina or anterior region and about 190 neurons in the Medulla or posterior region. The ganglion lies in the midplane of the organism and shows a high degree of left-right symmetry in its structures. The Lamina neurons form the first projection of the visual output from 176 retinula cells in the compound eye. In order to answer questions about structural invariance under constant genetic background, we have begun to reconstruct in detail the morphology and synaptic connectivity of various neurons in this ganglion from electron micrographs of serial sections (1). The ganglion is sectioned in a dorso-ventra1 direction so as to minimize the cross-sectional area photographed in each section. This area is about 60 μm x 120 μm, and hence most of the ganglion fit in a single 70 mm micrograph at the lowest magnification (685x) available on our Zeiss EM9-S.


Author(s):  
Matti Järvilehto ◽  
Riitta Harjula

The photoreceptor cells in the compound eyes of higher diptera are clustered in groups (ommatidia) of eight receptor cells. The cells from six adjacent ommatidia are organized into optical units, neuro-ommatia sharing the same visual field. In those ommatidia the optical axes of the photopigment containing structures (rhabdomeres) are parallel. The rhabdomeres of the photoreceptor cells are separated from each other by an interstitial i.e innerommatidial space (IOS). In the photoreceptor cell body, besides of the normal cell organelles, a cellular matrix is a structurally apparent component. Similar kind of reticular formation is also found in the IOS containing some unidentified filamentary substance, of which composition and functional significance for optical properties of vision is the aim of this report.The prefixed (2% PA + 0.2% GA in 0.1-n phosphate buffer, pH 7.4, for 1h), frozen section blocks of the compound eye of the blowfly (Calliphora erythrocephala) were prepared by immuno-cryo-techniques. The ultrathin cryosections were incubated with antibodies of monoclonal α-tubulin and polyclonal smooth muscle actin. Control labelings of excess of antigen, non-immune serum and non-present antibody were perforated.


Sign in / Sign up

Export Citation Format

Share Document