scholarly journals Involvement of Calyculin A- and Okadaic Acid-sensitive Protein Phosphatase in the Blue Light Response of Stomatal Guard Cells

1997 ◽  
Vol 38 (11) ◽  
pp. 1281-1285 ◽  
Author(s):  
T. Kinoshita ◽  
K.-i. Shimazaki
2004 ◽  
pp. 101-101

2000 ◽  
Vol 68 (3) ◽  
pp. 1350-1358 ◽  
Author(s):  
George A. Orr ◽  
Craig Werner ◽  
Jun Xu ◽  
Marcia Bennett ◽  
Louis M. Weiss ◽  
...  

ABSTRACT We cloned two novel Trypanosoma cruzi proteins by using degenerate oligonucleotide primers prepared against conserved domains in mammalian serine/threonine protein phosphatases 1, 2A, and 2B. The isolated genes encoded proteins of 323 and 330 amino acids, respectively, that were more homologous to the catalytic subunit of human protein phosphatase 1 than to those of human protein phosphatase 2A or 2B. The proteins encoded by these genes have been tentatively designated TcPP1α and TcPP1β. Northern blot analysis revealed the presence of a major 2.3-kb mRNA transcript hybridizing to each gene in both the epimastigote and metacyclic trypomastigote developmental stages. Southern blot analysis suggests that each protein phosphatase 1 gene is present as a single copy in the T. cruzi genome. The complete coding region for TcPP1β was expressed inEscherichia coli by using a vector, pTACTAC, with thetrp-lac hybrid promoter. The recombinant protein from the TcPP1β construct displayed phosphatase activity toward phosphorylasea, and this activity was preferentially inhibited by calyculin A (50% inhibitory concentration [IC50], ∼2 nM) over okadaic acid (IC50, ∼100 nM). Calyculin A, but not okadaic acid, had profound effects on the in vitro replication and morphology of T. cruzi epimastigotes. Low concentrations of calyculin A (1 to 10 nM) caused growth arrest. Electron microscopic studies of the calyculin A-treated epimastigotes revealed that the organisms underwent duplication of organelles, including the flagellum, kinetoplast, and nucleus, but were incapable of completing cell division. At concentrations higher than 10 nM, or upon prolonged incubation at lower concentrations, the epimastigotes lost their characteristic elongated spindle shape and had a more rounded morphology. Okadaic acid at concentrations up to 1 μM did not result in growth arrest or morphological alterations to T. cruziepimastigotes. Calyculin A, but not okadaic acid, was also a potent inhibitor of the dephosphorylation of 32P-labeled phosphorylase a by T. cruzi epimastigotes and metacyclic trypomastigote extracts. These inhibitor studies suggest that in T. cruzi, type 1 protein phosphatases are important for the completion of cell division and for the maintenance of cell shape.


1998 ◽  
Vol 275 (5) ◽  
pp. F664-F670 ◽  
Author(s):  
Chun Sik Park ◽  
Mi Hyun Kim ◽  
Chae Hun Leem ◽  
Yeon Jin Jang ◽  
Hae Won Kim ◽  
...  

We have recently shown that several putative selective inhibitors of Ca2+-calmodulin-dependent myosin light chain kinase (MLCK), such as ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine], reversibly stimulate renin secretion [C. S. Park, S.-H. Chang, H. S. Lee, S.-H. Kim, J. W. Chang, and C. D. Hong. Am. J. Physiol. 271 ( Cell Physiol. 40): C242–C247, 1996]. We hypothesized that Ca2+ inhibits renin secretion, via phosphorylation of 20-kDa myosin light chain (MLC20), by activating MLCK. In the present studies, we have investigated the types of protein phosphatase (PP) involved in the control of renin secretion through inhibition of MLC dephosphorylation using inhibitors of various types of serine/threonine-specific protein phosphatases. Cyclosporin A, a putative inhibitor of PP type 2 (calcineurin), was without effect. Calyculin A and okadaic acid, putative selective inhibitors of both PP type 1 (PP1) and type 2A (PP2A), significantly inhibited renin secretion under control conditions. Calyculin A had inhibitory effects at least 10-fold more potent than okadaic acid, suggesting that PP1, rather than PP2A, is involved in the control of renin secretion. Furthermore, calyculin A blocked the reversal of renin secretion preinhibited by raised intracellular Ca2+ concentrations in a concentration-dependent manner. Calyculin A (10−6 M) significantly inhibited renin secretion stimulated by lowering intracellular Ca2+ concentrations and blocked the stimulatory effect of ML-9 on renin secretion. Taking all of these results into consideration, we hypothesize that dephosphorylation of MLC20 by Ca2+-independent PP1 stimulates renin secretion, whereas phosphorylation of MLC20 by Ca2+-calmodulin-dependent MLCK inhibits it. This hypothesized regulatory model of renin secretion predicts that the rate of renin secretion at a given time is determined by the ratio of phosphorylated to dephosphorylated MLC20, which is, in turn, determined by the dynamic balance between activity of MLCK and MLC phosphatase.


2011 ◽  
Vol 52 (7) ◽  
pp. 1238-1248 ◽  
Author(s):  
Maki Hayashi ◽  
Shin-ichiro Inoue ◽  
Koji Takahashi ◽  
Toshinori Kinoshita

Sign in / Sign up

Export Citation Format

Share Document