Effect of Ventilation Type on Radon Concentration at Places of Work

1994 ◽  
Vol 56 (1-4) ◽  
pp. 61-63 ◽  
Author(s):  
E. Oksanen

Abstract Indoor radon (222Rn) concentrations were measured at 76 child care facilities and 36 schools in southern Finland. The buildings had three different types of ventilation systems: mechanical air supply and exhaust, mechanical exhaust, and natural ventilation, the first being most common. The effect of the ventilation type on the long-term radon concentration was studied in child care facilities. The radon concentrations were highest in the naturally ventilated buildings. The mechanical air supply and exhaust system maintained the lowest values in cold wintertime. In school buildings both the long-term radon concentration and short-term radon and daughter concentrations were measured. The correlation of the ventilation type and the radon concentration was not obvious in this group of measurements. But the radon concentrations and the equilibrium factors were highest in buildings with natural ventilation. Radon concentrations were generally lower during the working hours than during the one-month period, as expected.

2017 ◽  
Vol 167 ◽  
pp. 80-85 ◽  
Author(s):  
Cheol-Min Lee ◽  
Myung-hee Kwon ◽  
Dae-Ryong Kang ◽  
Tae-Hyun Park ◽  
Si-Hyun Park ◽  
...  

Author(s):  
Ji Park ◽  
Cheol Lee ◽  
Hyun Lee ◽  
Dae Kang

Long-term exposure to high radon concentration exerts pathological effects and elicits changes in respiratory function, increasing an individual’s risk of developing lung cancer. In health risk assessment of indoor radon, consideration of long-term exposure thereto is necessary to identify a relationship between indoor radon exposure and lung cancer. However, measuring long-term indoor radon concentration can be difficult, and a statistical model for predicting mean annual indoor radon concentrations may be readily applicable. We investigated the predictability of mean annual radon concentrations using national data on indoor radon concentrations throughout the spring, summer, fall, and winter seasons in Korea. Indoor radon concentrations in Korea were highest in the winter and lowest in the summer. We derived seasonal correction and seasonal adjustment factors for each season based on the method proposed by previous study. However, these factors may not be readily applicable unless measured in a specific season. In this paper, we separate seasonal correction factors for each month of the year (new correction factors) based on correlations between indoor radon and meteorological factors according to housing type. To evaluate the correction factors, we assessed differences between estimated and measured mean annual radon concentrations. Roughly 97% of the estimated values were within ±40 Bq/m3 of actual measured values in detached houses, and roughly 85–87% of the estimated values were within ±40 Bq/m3 of the measured values in other residences. In most cases, the seasonal correction factors and the new correction factors had slightly better agreement than the seasonal adjustment factor. For predicting mean annual radon concentrations, the seasonal correction factors or seasonal adjustment factors can be of use when actual measurements of indoor radon concentrations for a specific season are available. Otherwise, the new correction factors may be more readily applicable.


2019 ◽  
Vol 11 (22) ◽  
pp. 51-55 ◽  
Author(s):  
Ali A. Al-Hamidawi

    Measurement of radon concentration level was carried out in 40 houses in Al – Najaf city during summer season of 2012. Long term measurement of indoor of old building radon concentrations have been taken, using a previously calibrated passive diffusion dosimeters containing CR – 39 solid state nuclear track detectors which are very sensitive for alpha particles. The measurement of the indoor radon concentration obtained in summer in these regions ranged from 11.654±4.216 Bq.m-3 to 53.610±8.777 Bq.m-3. The results were within universally permitted levels.     


2001 ◽  
Vol 1 (2) ◽  
pp. 73-78 ◽  
Author(s):  
R. Amofah Dayie ◽  
S.S. Aronson ◽  
L. Jansen-McWilliams ◽  
K.J. Kelleher

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Joan Frédéric Rey ◽  
Stéphane Goyette ◽  
Mauro Gandolla ◽  
Martha Palacios ◽  
Fabio Barazza ◽  
...  

Radon is a natural and radioactive gas that can accumulate in indoor environments. Indoor radon concentration (IRC) is influenced, among other factors, by meteorology, which is the subject of this paper. Weather parameters impact indoor radon levels and have already been investigated, but rarely in Switzerland. Moreover, there is a strong need for a better understanding of the radon behaviour inside buildings in Switzerland for public health concerns as Switzerland is a radon prone area. Based on long-term, continuous, and hourly radon measurements, radon distributions classified according to different weather event definitions were investigated and then compared at three different study sites in Western Switzerland. Outdoor temperature influences the most indoor radon, and it is globally anti-correlated. Wind influences indoor radon, but it strongly depends on intensity, direction, and building characteristics. Precipitation influences periodically indoor radon levels relatively to their intensity. Atmospheric pressure and relative humidity do not seem to be huge determinants on IRC. Our results are in line with previous findings and provide a vivid example in Western Switzerland. This paper underlines the different influence complexities of radon, and the need to communicate about it within the broader public and with construction professionals, to raise awareness.


2004 ◽  
Vol 19 (1) ◽  
pp. 46-49 ◽  
Author(s):  
Asiye Ulug ◽  
Melek Karabulut ◽  
Nilgün Celebi

Indoor radon concentration levels at three sites in Turkey were measured using CR-39 solid state nuclear track detectors. The annual mean of radon concentration was estimated on the basis of four quarter measurements at specific locations in Turkey. The measuring sites are on the active faults. The results of radon measurements are based on 280 measurements in doors. The annual arithmetic means of radon concentrations at three sites (Isparta Egirdir, and Yalvac) were found to be 164 Bqm?3, 124 Bqm?3, and 112 Bqm?3 respectively, ranging from 78 Bqm?3 to 279 Bqm?3. The in door radon concentrations were investigated with respect to the ventilation conditions and the age of buildings. The ventilation conditions were determined to be the main factor affecting the in door radon concentrations. The in door radon concentrations in the new buildings were higher than ones found in the old buildings.


Sign in / Sign up

Export Citation Format

Share Document