scholarly journals Radon measurements with CR-39 track detectors at specific locations in Turkey

2004 ◽  
Vol 19 (1) ◽  
pp. 46-49 ◽  
Author(s):  
Asiye Ulug ◽  
Melek Karabulut ◽  
Nilgün Celebi

Indoor radon concentration levels at three sites in Turkey were measured using CR-39 solid state nuclear track detectors. The annual mean of radon concentration was estimated on the basis of four quarter measurements at specific locations in Turkey. The measuring sites are on the active faults. The results of radon measurements are based on 280 measurements in doors. The annual arithmetic means of radon concentrations at three sites (Isparta Egirdir, and Yalvac) were found to be 164 Bqm?3, 124 Bqm?3, and 112 Bqm?3 respectively, ranging from 78 Bqm?3 to 279 Bqm?3. The in door radon concentrations were investigated with respect to the ventilation conditions and the age of buildings. The ventilation conditions were determined to be the main factor affecting the in door radon concentrations. The in door radon concentrations in the new buildings were higher than ones found in the old buildings.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Dicu ◽  
B. D. Burghele ◽  
M. Botoş ◽  
A. Cucoș ◽  
G. Dobrei ◽  
...  

AbstractThe present study aims to identify novel means of increasing the accuracy of the estimated annual indoor radon concentration based on the application of temporal correction factors to short-term radon measurements. The necessity of accurate and more reliable temporal correction factors is in high demand, in the present age of speed. In this sense, radon measurements were continuously carried out, using a newly developed smart device accompanied by CR-39 detectors, for one full year, in 71 residential buildings located in 5 Romanian cities. The coefficient of variation for the temporal correction factors calculated for combinations between the start month and the duration of the measurement presented a low value (less than 10%) for measurements longer than 7 months, while a variability close to 20% can be reached by measurements of up to 4 months. Results obtained by generalized estimating equations indicate that average temporal correction factors are positively associated with CO2 ratio, as well as the interaction between this parameter and the month in which the measurement took place. The impact of the indoor-outdoor temperature differences was statistically insignificant. The obtained results could represent a reference point in the elaboration of new strategies for calculating the temporal correction factors and, consequently, the reduction of the uncertainties related to the estimation of the annual indoor radon concentration.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Joan Frédéric Rey ◽  
Stéphane Goyette ◽  
Mauro Gandolla ◽  
Martha Palacios ◽  
Fabio Barazza ◽  
...  

Radon is a natural and radioactive gas that can accumulate in indoor environments. Indoor radon concentration (IRC) is influenced, among other factors, by meteorology, which is the subject of this paper. Weather parameters impact indoor radon levels and have already been investigated, but rarely in Switzerland. Moreover, there is a strong need for a better understanding of the radon behaviour inside buildings in Switzerland for public health concerns as Switzerland is a radon prone area. Based on long-term, continuous, and hourly radon measurements, radon distributions classified according to different weather event definitions were investigated and then compared at three different study sites in Western Switzerland. Outdoor temperature influences the most indoor radon, and it is globally anti-correlated. Wind influences indoor radon, but it strongly depends on intensity, direction, and building characteristics. Precipitation influences periodically indoor radon levels relatively to their intensity. Atmospheric pressure and relative humidity do not seem to be huge determinants on IRC. Our results are in line with previous findings and provide a vivid example in Western Switzerland. This paper underlines the different influence complexities of radon, and the need to communicate about it within the broader public and with construction professionals, to raise awareness.


2021 ◽  
Vol 14 (4) ◽  
pp. 309-316

Abstract: The aim of the current study was to measure indoor radon concentration levels and its resulting doses received by the students and staff in schools of the directorate of education in the north of Hebron region- Palestine, during the summer months from June to September (2018), using CR-39 detectors. In this study, a total of 567 CR-39-based radon detectors were installed in the selected schools. The average radon concentrations were found to be 90.0, 66.5 and 58.0 Bqm-3 in Halhul, Beit Umar and Alarrub camp schools, respectively. Based on the measured indoor radon data, the overall average effective dose for the studied area was found to be 0.31 mSvy-1. Reported values for radon concentrations and corresponding doses are lower than ICRP recommended limits for workplaces. The results show no significant radiological risk for the pupils and staff in the schools under investigation. Consequently, the health hazards related to radiation are expected to be negligible. Keywords: Radon concentration, Alpha particles, Annual effective dose, Schools. PACs: 29.40.−n.


2020 ◽  
Vol 191 (2) ◽  
pp. 219-222
Author(s):  
Tatiana Petrova ◽  
Petr Miklyaev

Abstract Continuous indoor radon measurements were carried out in two traditional Russian rural houses located in different villages of the Moscow region in summer of 2017 and 2018. In additional, in the summer of 2017, continuous measurements of soil gas radon activity concentration at depth 0.8 m and radon exhalation rate from the ground surface near the house were performed simultaneously. It was found that the indoor radon concentration in rural houses is subject to strong daily variations, which are characterized by highs at night and lows during the day. Indoor radon concentration is directly proportional to indoor and outdoor temperature difference and inversely proportional to wind speed. While the radon exhalation rate from the ground surface, as well as the ventilation of premises (opening doors and windows) practically do not affect the concentration of radon in Russian rural wooden houses.


2010 ◽  
Vol 10 (4) ◽  
pp. 857-863 ◽  
Author(s):  
G. K. Gillmore ◽  
N. Jabarivasal

Abstract. This paper presents results of a reconnaissance study that used CR-39 alpha track-etch detectors to measure radon concentrations in dwellings in Hamadan, western Iran, significantly, built on permeable alluvial fan deposits. The indoor radon levels recorded varied from 4 (i.e. below the lower limit of detection for the method) to 364 Bq/m3 with a mean value of 108 Bq/m3 which is 2.5 times the average global population-weighted indoor radon concentration – these data augment the very few published studies on indoor radon levels in Iran. The maximum radon concentration in Hamadan occurs during the winter period (January to March) with lower concentrations during the autumn. The effective dose equivalent to the population in Hamadan is estimated from this study to be in the region of 2.7 mSv/y, which is above the guidelines for dose to a member of the public of 1 mSv/y suggested by the International Commission on Radiological Protection (ICRP) in 1993. This study supports other work in a number of countries that indicates such permeable "surficial" deposits as being of intermediate to high radon potential. In western Iran, the presence of hammered clay floors, the widespread presence of excavated qanats, the textural properties of surficial deposits and human behaviour intended to cope with winds are likely to be important factors influencing radon concentrations in older buildings.


2020 ◽  
Vol 191 (2) ◽  
pp. 133-137
Author(s):  
Z Curguz ◽  
G Venoso ◽  
Z S Zunic ◽  
D Mirjanic ◽  
M Ampollini ◽  
...  

Abstract The requirements about radon measurements in schools and public buildings included in most of the national and international legislations are generally restricted to all the rooms located at the ground floor and basement, assuming the soil beneath the building as the main source of indoor radon. In order to verify such an assumption for small buildings having at maximum two floors, a preliminary study was performed in 50 schools located in 15 municipalities of the Republic of Srpska. Results of this study suggest that a protocol requiring measurements at the ground floor only may be considered adequate. Due to the high radon spatial variability for rooms at the ground floor, it is preferable to require measurements in a high number of rooms (preferably in all of them) in order to assess the compliance with the reference level established by the legislation.


2020 ◽  
Vol 10 (7) ◽  
pp. 2341 ◽  
Author(s):  
Anita Ptiček Siročić ◽  
Davor Stanko ◽  
Nikola Sakač ◽  
Dragana Dogančić ◽  
Tomislav Trojko

(1) Background: Radon concentrations in the environment are generally very low. However, radon concentrations can be high indoors and can cause some serious health issues. The main source of indoor radon (homes, buildings and other residential objects) can be soil under the house, while other sources can be construction materials, groundwater and natural gas. Radon accumulates mainly in the lower levels of the buildings (especially low-ventilated underground levels and basements). (2) Methods: in this paper, we have measured the indoor radon concentrations at 15 locations in various objects (basements and ground floor/1st floor rooms) in the area of northern Croatia. (3) Results: the results show a higher concentration of radon in the basement area in comparison to values measured in the ground floor and first-floor rooms. The arithmetic mean (AM) and geometric mean (GM) of basement rooms were 70.9 ± 38.8 Bq/m3 and 61.2 ± 2.2 Bq/m3 compared to ground floor and first-floor rooms 42.5 ± 30.8 Bq/m3 and 32.8 ± 2.9 Bq/m3, respectively. (4) Conclusions: results obtained (AM and GM values) are within the maximal allowed values (300 Bq/m3) according to the Euroatom Directive. However, there are periods when maximum radon concentration exceeds 300 Bq/m3. Indoor radon concentrations vary with the occupancy of the rooms and it is evident that the ventilation has significant effect on the reduction of concentration.


2013 ◽  
Vol 16 (3) ◽  
pp. 53-60
Author(s):  
Hien Thi To ◽  
Nguyen Thao Nguyen ◽  
Huy Huu Duong

Radon is a naturally radioactive gas , but it causes lung cancer to humans. The risk of lung cancer due to radiation depends on the amount of radon inhalation and radon exposure time. In Vietnam, radon concentrations are usually determined by RAD7, however RAD7 just showed the immediate values of radon, and have to regularly calibrate it. The construction process to determine the accumulates indoor radon concentration by detector CR- 39 in order to be widely used in the study of environmental pollution, especially the study of health risks of radon for humans and mapping radon pollution. Detector CR - 39 is placed in a 7 cm - plastic holder, and in exposure time, the holders were covered with glass fiber filter paper ∅ 47mm on the bottom of the detector to avoid the exposure of dust. Then it is hung in the indoor location as Vietnam Standard 7889:2008. After 3 months, holders are returned to a laboratory, and CR - 39 will be soaked in 6M NaOH at 700C. Indoor radon concentrations will be proportional to the density traces obtained on CR-39. The study uses an radium 226 source of the NIST (National Institute for Standards and Technology) with the released radon coefficient : f = 0.891 ± 0.015. Results show the calibration factor K is 4.533 ± 0.218 [(Bq.m-3. day)]/(tracks / CR-39)]. Using K factor, we can determine the cumulative indoor radon concentration.


2020 ◽  
pp. 1420326X2092474
Author(s):  
James A McGrath ◽  
Miriam A Byrne

Exposure to radon is recognised as the second-leading cause of lung cancer after tobacco smoke. The passive measurements typically take up to three months to be representative of the annual radon concentration. A recently developed approach depressurises a dwelling to heighten the convective radon flux determining radon entry rate coefficients. The current study characterises the ventilation status, air tightness and eight selected hourly air change rates measurements, of a sample of naturally ventilated dwellings in Ireland. The household averaged air change rate ranged from 0.28 to 1.87 h−1 and airtightness measurements ranged from 4.830 to 9.423 m3 h−1 m−2 @ 50 Pa, depending on the building characteristics. The experimentally obtained values were used to parameterise a computational model for these selected dwellings and to predict radon concentrations. The radon entry rate power laws ranged from 0.18ΔP0.97 to 1.28ΔP1.18 Bq s−1. Probabilistic functions were generated based on the experimental data and predicted radon concentrations were within one standard deviation of the experimentally measured values in three out of four cases. The data generated can be used in modelling simulations to predict indoor radon concentrations based on local meteorological conditions, building characteristics, ventilation guidelines and energy-retrofit measurements.


1995 ◽  
Vol 162 (2-3) ◽  
pp. 209-213 ◽  
Author(s):  
O ENNEMOSER ◽  
S GIACOMUZZI ◽  
P BRUNNER ◽  
P SCHNEIDER ◽  
V STINGL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document