scholarly journals Homologs of Genes Associated with Programmed Cell Death in Animal Cells are Differentially Expressed During Senescence of Ipomoea nil Petals

2009 ◽  
Vol 50 (3) ◽  
pp. 610-625 ◽  
Author(s):  
T. Yamada ◽  
K. Ichimura ◽  
M. Kanekatsu ◽  
W. G. van Doorn
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Honglin Feng ◽  
Xiao Guo ◽  
Hongyan Sun ◽  
Shuai Zhang ◽  
Jinghui Xi ◽  
...  

Abstract Objective Previous studies showed that flight muscles degenerate after migration in some aphid species; however, the underlying molecular mechanism remains virtually unknown. In this study, using the wheat aphid, Sitobion avenae, we aim to investigate aphid flight muscle degeneration and the underlying molecular mechanism. Results Sitobion avenae started to differentiate winged or wingless morphs at the second instar, the winged aphids were fully determined at the third instar, and their wings were fully developed at the fourth instar. After migration, the aphid flight muscles degenerated via programmed cell death, which is evidenced by a Terminal deoxynucleotidyl transferase dUTP-biotin nick-end labeling assay. Then, we identified a list of differentially expressed genes before and after tethered flights using differential-display reverse transcription-PCR. One of the differentially expressed genes, ubiquitin-ribosomal S27a, was confirmed using qPCR. Ubiquitin-ribosomal S27a is drastically up regulated following the aphids’ migration and before the flight muscle degeneration. Our data suggested that aphid flight muscles degenerate after migration. During flight muscle degeneration, endogenous proteins may be degraded to reallocate energy for reproduction.


2019 ◽  
Author(s):  
Honglin Feng ◽  
Xiao Guo ◽  
Hongyan Sun ◽  
Shuai Zhang ◽  
Jinghui Xi ◽  
...  

Abstract Objective Previous studies showed that flight muscles degenerate after migration in some aphid species; however, the underlying molecular mechanism remains virtually unknown. In this study, using the wheat aphid, Sitobion avenae , we aim to investigate aphid flight muscle degeneration and the underlying molecular mechanism.Results S. avenae started to differentiate winged or wingless lines at the second instar, the winged aphids were fully determined at the third instar, and their wings were fully developed at the fourth instar. After migration, the aphid flight muscles degenerated via programmed cell death, which is evidenced by a Terminal deoxynucleotidyl transferase dUTP-biotin nick end labeling assay. Then, we identified a list of differentially expressed genes before and after tethered flights using differential-display reverse transcription-PCR. One of the differentially expressed genes, ubiquitin-ribosomal S27a, was confirmed using qPCR. Ubiquitin-ribosomal S27a is drastically up regulated following the aphids’ migration and before the flight muscle degeneration. Our data suggested that aphid flight muscles degenerate after migration. During flight muscle degeneration, endogenous proteins may be degraded to reallocate energy for reproduction.


2016 ◽  
Vol 23 (9) ◽  
pp. 1493-1501 ◽  
Author(s):  
Y Ge ◽  
Y-M Cai ◽  
L Bonneau ◽  
V Rotari ◽  
A Danon ◽  
...  

Abstract Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation.


Planta ◽  
2006 ◽  
Vol 224 (6) ◽  
pp. 1279-1290 ◽  
Author(s):  
Tetsuya Yamada ◽  
Yasumasa Takatsu ◽  
Masakazu Kasumi ◽  
Kazuo Ichimura ◽  
Wouter G. van Doorn

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8733
Author(s):  
Xia An ◽  
Jie Chen ◽  
Guanrong Jin

Heavy metal contamination of soils has become a serious global issue, and bioremediation has been proposed as a potential solution. Kenaf (Hibiscus cannabinus L.) is a fast growing, non-woody multipurpose annual plant that is suitable for removing excess heavy metals from soils. However, there has been relatively little research on the kenaf molecular mechanisms induced in response to an exposure to heavy metal stress. Thus, whole kenaf seedlings grown under control (normal) and stress (plumbic treatment) conditions were sampled for transcriptome sequencing. Unigenes generated through the de novo assembly of clean reads were functionally annotated based on seven databases. Transcription factor (TF)-coding genes were predicted and the physiological traits of the seedlings were analyzed. A total of 44.57 Gb high-quality sequencing data were obtained, which were assembled into 136,854 unigenes. These unigenes included 1,697 that were regarded as differentially expressed genes (DEGs). A GO enrichment analysis of the DEGs indicated that many of them are related to catalytic activities. Moreover, the DEGs appeared to suggest that numerous KEGG pathways are suppressed (e.g., the photosynthesis-involving pathways) or enhanced (like the flavonoid metabolism pathways) in response to Pb stress. Of the 2,066 predicted TF-coding genes, only 55 were differentially expressed between the control and stressed samples. Further analyses suggested that the plumbic stress treatment induced reactive oxygen species-dependent programmed cell death in the kenaf plants via a process that may be regulated by the differentially expressed NAC TF genes.


2006 ◽  
Vol 397 (3) ◽  
pp. 529-536 ◽  
Author(s):  
Fernando Domínguez ◽  
Francisco J. Cejudo

PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed.


2019 ◽  
Author(s):  
Honglin Feng ◽  
Xiao Guo ◽  
Hongyan Sun ◽  
Shuai Zhang ◽  
Jinghui Xi ◽  
...  

Abstract Objective Previous studies showed that flight muscles were degenerated after migration in some aphid species; however, the underlying molecular mechanism remains virtually unknown. In this study, using the wheat aphid, Sitobion avenae , we aim to investigate aphid flight muscle degeneration and the underlying molecular mechanism.Results Wheat aphid starts to differentiate winged or wingless lines at the second instar nymph, determined at the third instar, and then fully developed at the fourth instar. After migration, the flight muscles degenerated via programmed cell death, which is evidenced by a Terminal deoxynucleotidyl transferase dUTP-biotin nick end labeling assay. Then, we identified a list of differentially expressed genes before and after tethered flights using differential-display reverse transcription-PCR. One of the differentially expressed gene, ubiquitin-ribosomal S27a, was confirmed using qPCR. Ubiquitin-ribosomal S27a is drastically up regulated following aphids’ migration and before the flight muscle degeneration. Our data suggested that aphid flight muscles degenerate after migration, during which endogenous proteins may be degraded to reallocate energy for reproduction.


Sign in / Sign up

Export Citation Format

Share Document