scholarly journals Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells

2006 ◽  
Vol 397 (3) ◽  
pp. 529-536 ◽  
Author(s):  
Fernando Domínguez ◽  
Francisco J. Cejudo

PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed.

Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2299-2307 ◽  
Author(s):  
Masayuki Okada ◽  
Souichi Adachi ◽  
Tsuyoshi Imai ◽  
Ken-ichiro Watanabe ◽  
Shin-ya Toyokuni ◽  
...  

Abstract Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL–positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate–induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate–treated BCR-ABL–positive human leukemic cells. Moreover, zVAD-fmk–preincubated, imatinib mesylate–treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.


1993 ◽  
Vol 106 (1) ◽  
pp. 201-208 ◽  
Author(s):  
V. Garcia-Martinez ◽  
D. Macias ◽  
Y. Ganan ◽  
J.M. Garcia-Lobo ◽  
M.V. Francia ◽  
...  

In this work we have attempted to characterize the programmed cell death process in the chick embryonic interdigital tissue. Interdigital cell death is a prominent phenomenon during limb development and has the role of sculpturing the digits. Morphological changes in the regressing interdigital tissue studied by light, transmission and scanning electron microscopy were correlated with the occurrence of internucleosomal DNA fragmentation, evaluated using agarose gels. Programming of the cell death process was also analyzed by testing the chondrogenic potential of the interdigital mesenchyme, in high density cultures. Our results reveal a progressive loss of the chondrogenic potential of the interdigital mesenchyme, detectable 36 hours before the onset of the degenerative process. Internucleosomal DNA fragmentation was only detected concomitant with the appearance of cells dying with the morphology of apoptosis, but unspecific DNA fragmentation was also present at the same time. This unspecific DNA fragmentation was explained by a precocious activation of the phagocytic removal of the dying cells, confirmed in the tissue sections. From our observations it is suggested that programming of cell death involves changes before endonuclease activation. Further, cell surface changes involved in the phagocytic uptake of the dying cells appear to be as precocious as endonuclease activation.


1997 ◽  
Vol 82 (9) ◽  
pp. 3148-3155
Author(s):  
Wei Yuan ◽  
Linda C. Giudice

Abstract Although extensive investigation on follicular apoptosis (programmed cell death) has been conducted in the infraprimate ovary, there is little information regarding apoptosis and its relationship to follicular status in the human. In this study, apoptosis was investigated in 116 human ovarian follicles (primordial to dominant) and 5 corpora lutea from a total of 27 premenopausal women. Follicles and corpora lutea were evaluated for the presence of DNA fragmentation, characteristic of apoptosis, by two methods: in situ hybridization using 3′ end-labeling of DNA with digoxigenin-labeled nucleotides and subsequent digoxigenin antibody and peroxidase staining, and/or biochemical analysis of low molecular weight DNA laddering. Follicle functional status was evaluated by determining follicle sizes and follicular fluid androgen/estrogen (A/E) ratios. No apoptosis was observed in 67 primordial, primary, or secondary follicles. Positive staining for DNA fragmentation was found in a few granulosa cells in 0.1- to 2-mm follicles, whereas abundant staining in granulosa was detected in 2.1- to 9.9-mm follicles. In contrast, no DNA fragmentation was detected in dominant follicles (10–16 mm). The frequency of apoptosis in follicles was calculated to be 37% in 0.1- to 2-mm follicles, 50% in 2.1- to 5-mm follicles, and 27% in 5.1- to 9.9-mm follicles. Abundant low molecular weight DNA laddering was only found in androgen-dominant follicles and not in estrogen-dominant follicles. Positive staining for DNA fragmentation and low molecular weight DNA laddering were observed in degenerating but not healthy-appearing corpora lutea. In the former, DNA fragmentation was found primarily in large luteal cells. These data suggest that follicular atresia in human ovary results from normal programmed cell death and primarily occurs in the granulosa cell layers of the early antral and <10-mm antral follicles primarily. Furthermore, because apoptosis occurs as early as the 200-mm stage, follicle selection may begin as early as the initial formation of the antrum. The results also suggest that degeneration of the corpus luteum occurs by apoptotic mechanisms.


Virology ◽  
2013 ◽  
Vol 435 (2) ◽  
pp. 250-257 ◽  
Author(s):  
A. Louise McCormick ◽  
Linda Roback ◽  
Grace Wynn ◽  
Edward S. Mocarski

2019 ◽  
Author(s):  
Doshun Ito ◽  
Hinata Kawamura ◽  
Akira Oikawa ◽  
Yuta Ihara ◽  
Toshio Shibata ◽  
...  

AbstractGuanosine 3’,5’-bis(pyrophosphate) (ppGpp) functions as a second messenger in bacteria to adjust their physiology in response to environmental changes. In recent years, the ppGpp-specific hydrolase, metazoan SpoT homolog-1 (Mesh1), was shown to have important roles for growth under nutrient deficiency in Drosophila melanogaster. Curiously, however, ppGpp has never been detected in animal cells, and therefore the physiological relevance of this molecule, if any, in metazoans has not been established. Here, we report the detection of ppGpp in Drosophila and human cells and demonstrate that ppGpp accumulation induces metabolic changes, cell death, and eventually lethality in Drosophila. Our results provide the first evidence of the existence and function of the ppGpp-dependent stringent response in animals.


Sign in / Sign up

Export Citation Format

Share Document