scholarly journals PPR20 Is Required for the cis-Splicing of Mitochondrial nad2 Intron 3 and Seed Development in Maize

2019 ◽  
Vol 61 (2) ◽  
pp. 370-380 ◽  
Author(s):  
Yan-Zhuo Yang ◽  
Shuo Ding ◽  
Yong Wang ◽  
Hong-Chun Wang ◽  
Xin-Yuan Liu ◽  
...  

Abstract Pentatricopeptide repeat (PPR) proteins are helical repeat RNA-binding proteins that function in RNA processing by conferring sequence-specific RNA-binding activity. Owing to the lethality of PPR mutants, functions of many PPR proteins remain obscure. In this study, we report the function of PPR20 in intron splicing in mitochondria and its role in maize seed development. PPR20 is a P-type PPR protein targeted to mitochondria. The ppr20 mutants display slow embryo and endosperm development. Null mutation of PPR20 severely reduces the cis-splicing of mitochondrial nad2 intron 3, resulting in reduction in the assembly and activity of mitochondrial complex I. The ppr20-35 allele with a Mu insertion in the N-terminal region shows a much weaker phenotype. Molecular analyses revealed that the mutant produces a truncated transcript, coding for PPR20ΔN120 lacking the N-terminal 120 amino acids. Subcellular localization revealed that PPR20ΔN120:GFP is able to target to mitochondria as well, suggesting the sequence diversity of the mitochondrial targeting peptides. Another mutant zm_mterf15 was also found to be impaired in the splicing of mitochondrial nad2 intron 3. Further analyses are required to identify the exact function of PPR20 and Zm_mTERF15 in the splicing of nad2 intron 3.

2020 ◽  
Vol 21 (11) ◽  
pp. 4047 ◽  
Author(s):  
Rui Liu ◽  
Shi-Kai Cao ◽  
Aqib Sayyed ◽  
Chunhui Xu ◽  
Feng Sun ◽  
...  

Pentatricopeptide repeat (PPR) protein comprises a large family, participating in various aspects of organellar RNA metabolism in land plants. There are approximately 600 PPR proteins in maize, but the functions of many PPR proteins remain unknown. In this study, we defined the function of PPR18 in the cis-splicing of nad4 intron 1 in mitochondria and seed development in maize. Loss function of PPR18 seriously impairs embryo and endosperm development, resulting in the empty pericarp (emp) phenotype in maize. PPR18 encodes a mitochondrion-targeted P-type PPR protein with 18 PPR motifs. Transcripts analysis indicated that the splicing of nad4 intron 1 is impaired in the ppr18 mutant, resulting in the absence of nad4 transcript, leading to severely reduced assembly and activity of mitochondrial complex I and dramatically reduced respiration rate. These results demonstrate that PPR18 is required for the cis-splicing of nad4 intron 1 in mitochondria, and critical to complex I assembly and seed development in maize.


2020 ◽  
Author(s):  
Nikolay Manavski ◽  
Louis-Valentin Meteignier ◽  
Margarita Rojas ◽  
Andreas Brachmann ◽  
Alice Barkan ◽  
...  

ABSTRACTPentatricopeptide repeat (PPR) proteins are helical repeat-proteins that bind RNA in a modular fashion with a sequence-specificity that can be manipulated by the use of an amino acid code. As such, PPR repeats are promising scaffolds for the design of RNA binding proteins for synthetic biology applications. However, the in vivo functional capabilities of artificial PPR proteins built from consensus PPR motifs are just starting to be explored. Here, we report in vivo functions of an artificial PPR protein, dPPRrbcL, made of consensus PPR motifs that were designed to bind a sequence near the 5’ end of rbcL transcripts in Arabidopsis chloroplasts. We used a functional complementation assay to demonstrate that this protein bound its intended RNA target with specificity in vivo and that it substituted for a natural PPR protein by stabilizing processed rbcL mRNA. We targeted a second protein of analogous design to the petL 5’ UTR, where it substituted for the native stabilizing PPR protein PGR3, albeit inefficiently. These results showed that artificial PPRs can be engineered to functionally mimic the class of native PPR proteins that serve as physical barriers against exoribonucleases.


2020 ◽  
Vol 71 (18) ◽  
pp. 5495-5505 ◽  
Author(s):  
Rui Liu ◽  
Shi-Kai Cao ◽  
Aqib Sayyed ◽  
Huan-Huan Yang ◽  
Jiao Zhao ◽  
...  

Abstract C-to-U RNA editing in plant mitochondria requires the participation of many nucleus-encoded factors, most of which are pentatricopeptide repeat (PPR) proteins. There is a large number of PPR proteins and the functions many of them are unknown. Here, we report a mitochondrion-localized DYW-subgroup PPR protein, PPR27, which functions in the editing of multiple mitochondrial transcripts in maize. The ppr27 mutant is completely deficient in C-to-U editing at the ccmFN-1357 and rps3-707 sites, and editing at six other sites is substantially reduced. The lack of editing at ccmFN-1357 causes a deficiency of CcmFN protein. As CcmFN functions in the maturation pathway of cytochrome proteins that are subunits of mitochondrial complex III, its deficiency results in an absence of cytochrome c1 and cytochrome c proteins. Consequently, the assembly of mitochondrial complex III and super-complex I+III2 is decreased, which impairs the electron transport chain and respiration, leading to arrests in embryogenesis and endosperm development in ppr27. In addition, PPR27 was found to physically interact with ZmMORF1, which interacts with ZmMORF8, suggesting that these three proteins may facilitate C-to-U RNA editing via the formation of a complex in maize mitochondria. This RNA editing is essential for complex III assembly and seed development in maize.


2021 ◽  
Author(s):  
Kalia Bernath-Levin ◽  
Jason Schmidberger ◽  
Suvi Honkanen ◽  
Bernard Gutmann ◽  
Yueming Kelly Sun ◽  
...  

ABSTRACT Pentatricopeptide repeat (PPR) proteins are RNA-binding proteins that are attractive tools for RNA processing in synthetic biology applications given their modular structure and ease of design. Several distinct types of motifs have been described from natural PPR proteins, but almost all work so far with synthetic PPR proteins has focused on the most widespread P-type motifs. We have investigated synthetic PPR proteins based on tandem repeats of the more compact S-type PPR motif found in plant organellar RNA editing factors, and particularly prevalent in the lycophyte Selaginella. With the aid of a novel plate-based screening method we show that synthetic S-type PPR proteins are easy to design, bind with high affinity and specificity, and are functional in a wide range of pH, salt and temperature conditions. We find that they outperform a synthetic P-type PPR scaffold in many situations. We designed an S-type editing factor to edit an RNA target in E. coli and demonstrate that it edits effectively without requiring any additional cofactors to be added to the system. These qualities make S-type PPR scaffolds ideal for developing new RNA processing tools.


2015 ◽  
Vol 71 (2) ◽  
pp. 196-208 ◽  
Author(s):  
Benjamin S. Gully ◽  
Kunal R. Shah ◽  
Mihwa Lee ◽  
Kate Shearston ◽  
Nicole M. Smith ◽  
...  

Proteins of the pentatricopeptide repeat (PPR) superfamily are characterized by tandem arrays of a degenerate 35-amino-acid α-hairpin motif. PPR proteins are typically single-stranded RNA-binding proteins with essential roles in organelle biogenesis, RNA editing and mRNA maturation. A modular, predictable code for sequence-specific binding of RNA by PPR proteins has recently been revealed, which opens the door to thede novodesign of bespoke proteins with specific RNA targets, with widespread biotechnological potential. Here, the design and production of a synthetic PPR protein based on a consensus sequence and the determination of its crystal structure to 2.2 Å resolution are described. The crystal structure displays helical disorder, resulting in electron density representing an infinite superhelical PPR protein. A structural comparison with related tetratricopeptide repeat (TPR) proteins, and with native PPR proteins, reveals key roles for conserved residues in directing the structure and function of PPR proteins. The designed proteins have high solubility and thermal stability, and can form long tracts of PPR repeats. Thus, consensus-sequence synthetic PPR proteins could provide a suitable backbone for the design of bespoke RNA-binding proteins with the potential for high specificity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Santana Royan ◽  
Bernard Gutmann ◽  
Catherine Colas des Francs-Small ◽  
Suvi Honkanen ◽  
Jason Schmidberger ◽  
...  

AbstractMembers of the pentatricopeptide repeat (PPR) protein family act as specificity factors in C-to-U RNA editing. The expansion of the PPR superfamily in plants provides the sequence variation required for design of consensus-based RNA-binding proteins. We used this approach to design a synthetic RNA editing factor to target one of the sites in the Arabidopsis chloroplast transcriptome recognised by the natural editing factor CHLOROPLAST BIOGENESIS 19 (CLB19). We show that our synthetic editing factor specifically recognises the target sequence in in vitro binding assays. The designed factor is equally specific for the target rpoA site when expressed in chloroplasts and in the bacterium E. coli. This study serves as a successful pilot into the design and application of programmable RNA editing factors based on plant PPR proteins.


2019 ◽  
Vol 60 (8) ◽  
pp. 1734-1746 ◽  
Author(s):  
Zhenjing Ren ◽  
Kaijian Fan ◽  
Ting Fang ◽  
Jiaojiao Zhang ◽  
Li Yang ◽  
...  

Abstract Pentatricopeptide repeat (PPR) proteins play crucial roles in intron splicing, which is important for RNA maturation. Identification of novel PPR protein with the function of intron splicing would help to understand the RNA splicing mechanism. In this study, we identified the maize empty pericarp602 (emp602) mutants, the mature kernels of which showed empty pericarp phenotype. We cloned the Emp602 gene from emp602 mutants and revealed that Emp602 encodes a mitochondrial-localized P-type PPR protein. We further revealed that Emp602 is specific for the cis-splicing of mitochondrial Nad4 intron 1 and intron 3, and mutation of Emp602 led to the loss of mature Nad4 transcripts. The loss of function of Emp602 nearly damaged the assembly and accumulation of complex I and arrested mitochondria formation, which arrested the seed development. The failed assembly of complex I triggers significant upregulation of Aox expression in emp602 mutants. Transcriptome analysis showed that the expression of mitochondrial-related genes, e.g. the genes associated with mitochondrial inner membrane presequence translocase complex and electron carrier activity, were extensively upregulated in emp602 mutant. These results demonstrate that EMP602 functions in the splicing of Nad4 intron 1 and intron 3, and the loss of function of Emp602 arrested maize seed development by disrupting the mitochondria complex I assembly.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ru Chang Ren ◽  
Xu Wei Yan ◽  
Ya Jie Zhao ◽  
Yi Ming Wei ◽  
Xiaoduo Lu ◽  
...  

Abstract Background Pentatricopeptide repeat (PPR) proteins compose a large protein family whose members are involved in both RNA processing in organelles and plant growth. Previous reports have shown that E-subgroup PPR proteins are involved in RNA editing. However, the additional functions and roles of the E-subgroup PPR proteins are unknown. Results In this study, we developed and identified a new maize kernel mutant with arrested embryo and endosperm development, i.e., defective kernel (dek) 55 (dek55). Genetic and molecular evidence suggested that the defective kernels resulted from a mononucleotide alteration (C to T) at + 449 bp within the open reading frame (ORF) of Zm00001d014471 (hereafter referred to as DEK55). DEK55 encodes an E-subgroup PPR protein within the mitochondria. Molecular analyses showed that the editing percentage of 24 RNA editing sites decreased and that of seven RNA editing sites increased in dek55 kernels, the sites of which were distributed across 14 mitochondrial gene transcripts. Moreover, the splicing efficiency of nad1 introns 1 and 4 and nad4 intron 1 significantly decreased in dek55 compared with the wild type (WT). These results indicate that DEK55 plays a crucial role in RNA editing at multiple sites as well as in the splicing of nad1 and nad4 introns. Mutation in the DEK55 gene led to the dysfunction of mitochondrial complex I. Moreover, yeast two-hybrid assays showed that DEK55 interacts with two multiple organellar RNA-editing factors (MORFs), i.e., ZmMORF1 (Zm00001d049043) and ZmMORF8 (Zm00001d048291). Conclusions Our results demonstrated that a mutation in the DEK55 gene affects the mitochondrial function essential for maize kernel development. Our results also provide novel insight into the molecular functions of E-subgroup PPR proteins involved in plant organellar RNA processing.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sam Manna ◽  
Jessica Brewster ◽  
Christian Barth

Pentatricopeptide repeat (PPR) proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protistDictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.


2020 ◽  
Vol 61 (11) ◽  
pp. 1954-1966 ◽  
Author(s):  
Kaijian Fan ◽  
Yixuan Peng ◽  
Zhenjing Ren ◽  
Delin Li ◽  
Sihan Zhen ◽  
...  

Abstract Pentatricopeptide repeat (PPR) proteins involved in mitochondrial RNA cytidine (C)-to-uridine (U) editing mostly result in stagnant embryo and endosperm development upon loss of function. However, less is known about PPRs that are involved in farinaceous endosperm formation and maize quality. Here, we cloned a maize DYW-type PPR Defective Kernel605 (Dek605). Mutation of Dek605 delayed seed and seedling development. Mitochondrial transcript analysis of dek605 revealed that loss of DEK605 impaired C-to-U editing at the nad1-608 site and fails to alter Ser203 to Phe203 in NAD1 (dehydrogenase complex I), disrupting complex I assembly and reducing NADH dehydrogenase activity. Meanwhile, complexes III and IV in the cytochrome pathway, as well as AOX2 in the alternative respiratory pathway, are dramatically increased. Interestingly, the dek605 mutation resulted in opaque endosperm and increased levels of the free amino acids alanine, aspartic acid and phenylalanine. The down- and upregulated genes mainly involved in stress response-related and seed dormancy-related pathways, respectively, were observed after transcriptome analysis of dek605 at 12 d after pollination. Collectively, these results indicate that Dek605 specifically affects the single nad1-608 site and is required for normal seed development and resulted in nutritional quality relevant amino acid accumulation.


Sign in / Sign up

Export Citation Format

Share Document