Thermal Stability of Chloritoid at High Pressure and relatively High Oxygen Fugacity

1968 ◽  
Vol 9 (3) ◽  
pp. 444-466 ◽  
Author(s):  
J. GANGULY ◽  
R. C. NEWTON
2020 ◽  
Vol 168 ◽  
pp. 110550 ◽  
Author(s):  
Pham Tran Hung ◽  
Megumi Kawasaki ◽  
Jae-Kyung Han ◽  
János L. Lábár ◽  
Jenő Gubicza

2021 ◽  
Vol 130 (13) ◽  
pp. 135104
Author(s):  
Juwei Wang ◽  
Haihua Chen ◽  
Zhengang Zhang ◽  
Bin Wang ◽  
Hongtao Ma ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 338-344
Author(s):  
Wan Ji Chen ◽  
Jie Xu ◽  
De Tong Liu ◽  
De Bin Shan ◽  
Bin Guo ◽  
...  

High-pressure torsion (HPT) was conducted under 6.0 GPa on commercial purity titanium up to 10 turns. An ultrafine-grained (UFG) pure Ti with an average grain size of ~96 nm was obtained. The thermal properties of these samples were studied by using differential scanning calorimeter (DSC) which allowed the quantitative determination of the evolution of stored energy, the recrystallization temperatures, the activation energy involved in the recrystallization of the material and the evolution of the recrystallized fraction with temperature. The results show that the stored energy increases, beyond which the stored energy seems to level off to a saturated value with increase of HPT up to 5 turns. An average activation energy of about 101 kJ/mol for the recrystallization of 5 turns samples was determined. Also, the thermal stability of the grains of the 5 turns samples with subsequent heat treatments were investigated by microstructural analysis and Vickers microhardness measurements. It is shown that the average grain size remains below 246 nm when the annealing temperature is below 500 °C, and the size of the grains increases significantly for samples at the annealing temperature of 600 °C.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 200 ◽  
Author(s):  
Zheng-Zheng Feng ◽  
Zhong-Jie Bai ◽  
Hong Zhong ◽  
Wei-Guang Zhu ◽  
Shi-Ji Zheng

Volcanic rocks, as the extrusive counterparts of the mineralized intrusions, can provide important information on the magma source, petrogenesis, and metallogenic conditions of the coeval porphyry-epithermal system. Shanghang Basin volcanic rocks are spatially and temporally related to a series of adjacent porphyry-epithermal Cu–Au deposits, and they can be used as a window to study the related deposits. Two laser-ablation–inductively coupled plasma–mass spectrometry zircon U–Pb analyses of the volcanic rocks yield weighted mean ages of ~105 Ma, identical to the age of the coeval porphyry-epithermal mineralization. Rocks have SiO2 contents of 55.4 to 74.8 wt % and belong to the high-K to shoshonitic series, characterized by strong differentiation of light rare-earth elements (REEs) relative to heavy REEs (mean LaN/YbN = 16.88); enrichment in light REEs, Rb, Th, and U; and depletion in Nb, Ta, Zr, Hf, and Ti. The volcanic rocks display (87Sr/86Sr)i values of 0.709341 to 0.711610, εNd(t) values of −6.9 to −3.3 εHf(t) values of −3.95 to −0.30, and δ18O values of 6.07‰–6.79‰, suggesting that the parental magmas were derived from a mantle source enriched by subduction-related progress. SiO2 content shows a strong negative correlation with the contents of some major and trace elements, indicating that fractional crystallization played an important role in the generation of these rocks. A binary mixing model of Hf–O isotopes gives an estimated degree of crustal contamination of 30%. In addition, magnetite crystallized early, and the samples showed high zircon EuN/EuN* values (0.48–0.68), indicating that the parental magma had a high oxygen fugacity. The inferred suppression of plagioclase crystallization and increasing hornblende crystallization during magma evolution suggest that the magma was water rich. The high-water content and high oxygen fugacity of the magma promoted the dissolving of sulfides containing Cu and Au in the source area and contributed to the migration of ore-forming elements.


Sign in / Sign up

Export Citation Format

Share Document