Mineralogical Evidence of Pre-caldera Magma Petrogenesis in the Jemez Mountains Volcanic Field, New Mexico, USA

2020 ◽  
Vol 61 (7) ◽  
Author(s):  
Jie Wu ◽  
Michael C Rowe ◽  
Shane J Cronin ◽  
John A Wolff

Abstract The Jemez Mountains volcanic field (JMVF) is the site of the two voluminous, caldera-forming members of the Bandelier Tuff, erupted at 1·60 and 1·25 Ma, following a long and continuous pre-caldera volcanic history (∼10 Myr) in this region. Previous investigations utilizing whole-rock geochemistry identified complex magmatic processes in the two major pulses of pre-caldera magmatism including assimilation–fractional crystallization (AFC) and magma mixing. Here we extend the petrological investigation of the pre-caldera volcanic rocks into the micro-realm and use mineral chemistry and textural information to refine magma evolution models. The results show an increasing diversity of mineral populations as the volcanic field evolved. A range of plagioclase textures (e.g. sieved cores and rims) indicate disequilibrium conditions in almost all pre-caldera magmas ranging from andesite to rhyolite, reflecting plagioclase dissolution and regrowth. Coarsely sieved or dissolved plagioclase cores are explained by resorption via water-undersaturated decompression during upward migration from a deep melting, assimilation, storage and homogenization (MASH) zone. Plagioclase crystals with sieved rims are almost ubiquitous in dacite-dominated magmatism (La Grulla Plateau andesite and dacite erupted at ∼8–7 Ma, as well as Tschicoma Formation andesite, dacite and rhyolite at ∼5–2 Ma), reflecting heating induced by magma mixing. These plagioclase crystals often have An-poor cores that are chemically distinct from their An-rich rims. The existence of different plagioclase populations is consistent with two distinct amphibole groups that co-crystallized with plagioclase: a low-Al, low-temperature, high-fO2 group, and a high-Al, high-temperature, low-fO2 group. Calculation of melt Sr, Ba, La, and Ce concentrations from plagioclase core and rim compositions suggests that these chemical variations are largely produced by magma mixing. Multiple mafic endmembers were identified that may be connected by AFC processes in the MASH zone in the middle to lower crust. The silicic component in an early andesite-dominated magmatic system (Paliza Canyon andesite, dacite and rhyolite, 10–7 Ma) is represented by contemporaneous early rhyolite (Canovas Canyon Rhyolite). A silicic mush zone in the shallow crust is inferred as both the silicic endmember involved in the dacite-dominant magmatic systems and source of the late low-temperature rhyolite (Bearhead Rhyolite, 7–6 Ma). Recharging of the silicic mush by mafic melts can explain observed diversity in both mineral disequilibrium textures and compositions in the dacitic magmas. Overall, the pre-caldera JMVF magmatic system evolved towards cooler and more oxidized conditions with time, indicating gradual thermal maturation of local crust, building up to a transcrustal magmatic system, which culminated in ‘super-scale’ silicic volcanism. Such conditioning of crust with heat and mass by early magmatism might be common in other long-lived volcanic fields.

2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 1194-1205 ◽  
Author(s):  
Omid Namin ◽  
Afshin Ardalan ◽  
Mohammad Razavi ◽  
Arash Gourabjeripour ◽  
Abdollah Yazdi

2020 ◽  
Vol 1 (22) ◽  
Author(s):  
Zehra Salkić ◽  
Boško Lugović ◽  
Elvir Babajić

Postorogenic volcanic rocks of different Tertiary ages are very common in the Sava-Vardar Zone of the Dinarides and in the southeastern part of adjoing Pannonian Basin. South of the Sava-Vardar Zone, in central Bosnia, Tertiary volcanic rocks occur within ophiolite sequences and genetically related sedimentary formations of the Dinaride Ophiolite Zone. Central Bosnia volcanic rocks are mostly dacites, and highly subordinately andesites as the members of the high-K calc-alkaline series.It appears from the mineralogical and petrographic characteristics obtained some insight into the processes that occurred during the genesis of the rocks. The presence of primary igneous minerals: clinopyroxene, orthopyroxene, hornblende and biotite from ferromagnesian minerals, and plagioclase, sanidine and quartz, indicates that the fractional crystallization played a significant role in the genesis of the rocks. Reaction edge on many rounded quartz phenocrysts indicates the possibility of magma mixing with the formation of Tertiary volcanic rocks of the central Bosnia. On magma mixing different temperature and chemical composition also indicates the existence of zoned plagioclase and amphibole phenocrysts.Complex compositional and zoning patterns of biotite and plagioclase phenocrysts and disequilibrium microstructures of plagioclase and quartz phenocrysts suggest interaction of fractionating, mantle derived melts with continental crust during a shalow level pre-eruptive stage and mixing with small amount of devolatilized phlogopite-phyric mafic magma before eruption.


1982 ◽  
Vol 46 (340) ◽  
pp. 379-386 ◽  
Author(s):  
Paul M. Holm

SynopsisThe Vulsinian district is the largest and northernmost of the Roman Provinces. There is very little modern mineralogical data on the Italian Pliocene to Recent perpotassic alkaline volcanic rocks and this account deals with the compositions of the phenocrysts in the Vulsinian lavas.The lavas comprise two suites: a leueite-bearing undersaturated series of leucitites, leueite tephrites, leucite phonolites, and trachytes; and a subordinate hy-normative series of mainly trachytes and latites. All lavas are porphyritic with mostly 1–15 vol. % phenoerysts. No cumulates were found. Major elements, and Cr and Ni were determined in the phenocrysts by microprobe analysis and more than 20 trace elements were determined on mineral separates by PIXE.The undersaturated suite. Ubiquitous clinopyroxene phenoerysts belong to the Di-Hedss series and range from Di97 to Di46. Important amounts of Fe3+ are always present. In the mafic rocks the diopside is chromian, but Ti is low. AI mainly substitutes in the Z positions in all lavas. Only minor Na enrichment occurs with increasing total Fe (0–7 mole % acmite) and thus Ca ferri-Tschermak's component is important. In many of the maric lavas diopside mantles green cores of salite, which has a composition very like the salite of felsic lavas. Leucites contain 5–22 mole % orthoelase in solid solution, but show no systematic variation. Plagioclase, mostly An93-An72, occurs in the felsie lavas, and alkali feldspar only in some phonolites. They both have exceptionally high concentrations of Sr and Ba, with a maximum of 1.3 wt. % SrO and 5.6 wt. % BaO in hyalophanes. Olivine, Fo92-Fo66, occurs in some leucititic lavas in mostly accessory amounts. Phlognpite, magnetite and nepheline are accessory phases of the felsic lavas. Apatite only occur as micro-phenocrysts of the fclsic lavas. Haüyne in trace amounts is found in a few phonolites. Pargasitic amphibole microphenocrysts are found in one lava.In most marie members diopside ±leuctie ±olivine were liquidus phases. This study does not confirm that these rocks are related by crystal fractionation. In more felsie lavas clinopyroxene (salite-ferrosalite) and leucite are joined by: plagioclase, magnetite ±phlogopite, and Ba-rich alkali feldspar ±haüyne. The felsic rocks are thought to be related by crystal fractionation.Salitic green cores of phenocrystic pyroxene, mantled by diopside in rocks which also carry normally-zoned diopside, are relicts which provide evidence of either a relatively high PH2O, prior to the crystallization of diopside or magma mixing in the earlier life of these lavas. Pyroxene chemistry points towards low-pressure crystallization (2 kbar), generally in a dry environment.The hy-normative suite. All lavas have phenocrysts of augite, sanidine, plagioclase, magnetite, biotite, and olivine. The pyroxene is less calcic and has less alumina, but is otherwise rather similar to the salites of the undersaturated suite. Compared to the undersaturated suite, feldspars do not have high Sr and Ba, magnetite has higher TiO2 and olivine crystallized from even the felsic lavas. The pyroxenes show the signs of low-pressure crystallization.


Author(s):  
Peter W. Lipman

ABSTRACTStructural and topographic relief along the eastern margin of the Rio Grande rift, northern New Mexico, provides a remarkable cross-section through the 26-Ma Questa caldera and cogenetic volcanic and plutonic rocks of the Latir field. Exposed levels increase in depth from mid-Tertiary depositional surfaces in northern parts of the igneous complex to plutonic rocks originally at 3–5 km depths in the S. Erosional remnants of an ash-flow sheet of weakly peralkaline rhyolite (Amalia Tuff) and andesitic to dacitic precursor lavas, disrupted by rift-related faults, are preserved as far as 45 km beyond their sources at the Questa caldera. Broadly comagmatic 26 Ma batholithic granitic rocks, exposed over an area of 20 by 35 km, range from mesozonal granodiorite to epizonal porphyritic granite and aplite; shallower and more silicic phases are mostly within the caldera. Compositionally and texturally distinct granites define resurgent intrusions within the caldera and discontinuous ring dikes along its margins; a batholithic mass of granodiorite extends 20 km S of the caldera and locally grades vertically to granite below its flat-lying roof. A negative Bouguer gravity anomaly (15–20 mgal), which encloses exposed granitic rocks and coincides with boundaries of the Questa caldera, defines boundaries of the shallow batholith, emplaced low in the volcanic sequence and in underlying Precambrian rocks. Palaeomagnetic pole positions indicate that successively crystallised granitic plutons cooled through Curie temperatures during the time of caldera formation, initial regional extension, and rotational tilting of the volcanic rocks. Isotopic ages for most intrusions are indistinguishable from the volcanic rocks. These relations indicate that the batholithic complex broadly represents the source magma for the volcanic rocks, into which the Questa caldera collapsed, and that the magma was largely liquid during regional tectonic disruption.Volcanic and plutonic magmas (1) changed from early high-K calc-alkaline to alkalic prior to caldera eruptions; (2) differentiated to a weakly peralkaline rhyolite and equivalent acmiteartvedsonite granite cap (underlain by calc-alkaline granite) when the caldera formed at 26·5 Ma; then (3) reverted to calc-alkaline compositions. Concentrations of alkalis and minor elements such as Rb, Th, U, Nb, Zr, and Y reached maxima at the caldera stage. The volcanic rocks constitute intermittently quenched samples of upper parts of Questa magma bodies at early stages of crystallisation; in contrast, the comagmatic granitic rocks preserve an integrated record of protracted crystallisation of the magmatic residue as eruptions diminished. Multiple differentiation processes were active during evolution of the Questa magmatic system: crystal fractionation, replenishment by mantle and lower crustal melts of varying chemical and isotopic character, mixing of evolved with more primitive magmas, upper crustal assimilation, and perhaps volatile-transfer processes. As a result, an evolving batholithic cluster of coalesced magma chambers generated diverse assemblages of broadly cogenetic rocks within a few million years. Evolution of the Questa magmatic system and similar high-level Tertiary granitic batholiths nearby in the southern Rocky Mountains provides broad insights into magmatic processes in continental regions such as the overall shapes of batholiths, time and compositional relations between cogenetic volcanic and plutonic rocks, density equilibration of magmas with country rocks, and thermal evolution of continental crust.


2019 ◽  
Author(s):  
Mary Humphreys ◽  
◽  
Gary S. Michelfelder ◽  
Max L. Hoffman ◽  
Shannon Porter Rentz

There are well established differences in the chemical and isotopic characteristics of the calc-alkaline basalt—andesite-dacite-rhyolite association of the northern (n.v.z.), central (c.v.z.) and southern volcanic zones (s.v.z.) of the South American Andes. Volcanic rocks of the alkaline basalt-trachyte association occur within and to the east of these active volcanic zones. The chemical and isotopic characteristics of the n.v.z. basaltic andesites and andesites and the s.v.z. basalts, basaltic andesites and andesites are consistent with derivation by fractional crystallization of basaltic parent magmas formed by partial melting of the asthenospheric mantle wedge containing components from subducted oceanic lithosphere. Conversely, the alkaline lavas are derived from basaltic parent magmas formed from mantle of ‘within-plate’ character. Recent basaltic andesites from the Cerro Galan volcanic centre to the SE of the c.v.z. are derived from mantle containing both subduction zone and within-plate components, and have experienced assimilation and fractional crystallization (a.f.c.) during uprise through the continental crust. The c.v.z. basaltic andesites are derived from mantle containing subduction-zone components, probably accompanied by a.f.c. within the continental crust. Some c.v.z. lavas and pyroclastic rocks show petrological and geochemical evidence for magma mixing. The petrogenesis of the c.v.z. lavas is therefore a complex process in which magmas derived from heterogeneous mantle experience assimilation, fractional crystallization, and magma mixing during uprise through the continental crust.


EKSPLORIUM ◽  
2020 ◽  
Vol 41 (2) ◽  
pp. 73
Author(s):  
Windi Anarta Draniswari ◽  
Sekar Indah Tri Kusuma ◽  
Tyto Baskara Adimedha ◽  
I Gde Sukadana

ABSTRAK Anomali radiometri telah ditemukan di area Sungai Amplas pada bongkah batuan vulkanik. Nilai yang terukur dari spektrometer gama adalah 787 ppm eU dan 223 ppm eTh. Penemuan ini menarik untuk pengembangan eksplorasi. Studi lebih lanjut diperlukan untuk mengetahui karekteristik batuan pembawa mineral radioaktif dari sampel in-situ. Penelitian ini bertujuan untuk mengetahui karakteristik petrologi dan geokimia batuan vulkanik Ampalas sebagai studi awal untuk mengetahui proses akumulasi mineral radioaktif pada batuan vulkanik Ampalas. Metodologi yang digunakan meliputi pengamatan lapangan, pengambilan sampel batuan, analisis petrografi dan X-Ray Fluorescence (XRF). Batuan vulkanik ampalas tersusun atas ponolit, foidit, dan foid-syenit. Tekstur batuannya terdiri dari porfiritik, aliran, rim piroksen, zoning, pseudo-leusit, korosi, inklusi mafik, dan sieve. Karakteristik geokimia menunjukkan alkalinitas tinggi dan indikasi pengayaan mineral radioaktif yang tersebar dalam batuan. Proses magmatis yang berperan dalam pembentukan batuan vulkanik adalah fraksionasi kristal (fraksionasi leusit dan alkali felspar), asimilasi kerak kontinen, dan pencampuran magma. Interaksi antara magma dan kerak menyebabkan diferensiasi magma berkelanjutan yang menghasilkan akumulasi uranium dan torium lebih tinggi.ABSTRACT Anomalous radiometry has been found in Ampalas River Area on volcanic rock boulder. The values measured from gamma spectrometer are 787 ppm eU and 223 ppm eTh. This discovery is promising for exploration development. Further study need to figure the radioactive mineral bearing rock characteristic from in-situ samples. The research aim is to determine the petrology and geochemical characteristics of Ampalas volcanic rocks as preliminary study to find radioactive mineral accumulation process of Ampalas volcanic rocks. The methodologies are field observation, rock sampling, petrography, and X-Ray fluorescence (XRF) analyses. The Ampalas volcanic rocks consist of phonolite, phoidite, and phoid syenite. Their textures are porphyritic, flow, pyroxene rim, zoning, pseudo-leucite, corrosion, mafic inclusions, and sieve. The geochemical characteristics show high alkalinity and radioactive mineral enrichment disseminating on rock. The magmatic processes which play a significant role in radioactive mineral-bearing rocks formation are crystal fractionations (leucite and alkaline feldspar fractionations), continental crust assimilation, and magma mixing. Long interaction between magma and crust creates advanced magma differentiation causing higher uranium and thorium accumulation.  


Geofluids ◽  
2012 ◽  
Vol 12 (4) ◽  
pp. 295-311 ◽  
Author(s):  
M. KOUSEHLAR ◽  
T. B. WEISENBERGER ◽  
F. TUTTI ◽  
H. MIRNEJAD

Sign in / Sign up

Export Citation Format

Share Document