vardar zone
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 149 ◽  
pp. 101880
Author(s):  
Emő Márton ◽  
Marinko Toljić ◽  
Vesna Cvetkov

Geologija ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 143-158
Author(s):  
Darko SPAHIĆ ◽  
Tivadar GAUDENYI

The study provides a deeper understanding of the early Mesozoic paleogeogeographic spatial-temporal relationship by studying the two Adria-Europe intervening basement blocks. The Drina-Ivanjica and Pelagonian crustal fragments play important role in the internal early Alpine oceanic constitution further controlling the late Jurassic emplacement of Tethyan Dinaric-Hellenic ophiolites. The proposed paleogeographic reassessment is driven by the new paleocontinental inheritance data associated with the Variscan – pre-Variscan basement terranes. The recently published data suggest an Avalonian-type inheritance of the Pelagonian basement block which indicates a different pre-Variscan plate-tectonic journey, including separate spatial arrangement during Variscan amalgamation. In turn, Cadomian-type basement inheritance has been documented within the sliced Adria microplate. Thus, the Avalonian inheritance place the Pelagonian block away from the Apulia/Adria (Dinarides). In the investigated context of Paleozoic-Mesozoic paleogeographic transition, the Pelagonian block may represent a segment of the Cimmerian ribbon continent or southernmost segment of the Variscan Europe. With regards the nearby Adria microplate, a Triassic-Jurassic oceanic opening led to the decoupling (spreading away from the main Adria microplate) of the Drina-Ivanjica block. The rifting is in line with the simultaneous yet opposite or westward-directed drift of the Pelagonides. The breakup of south European Variscan configuration eventually result in the spatial alignment of the two basement fragments referred to as the “Drina–Pelagonide continental splinter”. By linking the paleogeographic pre-Jurassic–Jurassic relationship between these continental units, the two landlocked Neotethyan Vardar s.l. basins are extrapolated, “Dinaric Tethys” / Inner Dinaric-(Mirdita-Pindos) and the main Vardar Ocean (Western Vardar Zone).


Author(s):  
Kata Molnár ◽  
Pierre Lahitte ◽  
Stéphane Dibacto ◽  
Zsolt Benkó ◽  
Samuele Agostini ◽  
...  

AbstractLate Miocene to Pleistocene volcanism within the Vardar zone (North Macedonia) covers a large area, has a wide range in composition, and is largely connected to the tectonic evolution of the South Balkan extensional system, the northern part of the Aegean extensional regime. The onset of the scattered potassic to ultrapotassic volcanism south from the Scutari-Peć transverse zone occurred at ca. 8.0 Ma based on this study. Here, we focused on three volcanic centers located on deep structures or thrust faults along the western part of the Vardar zone, for which there is none to very little geochronological and geochemical data available. Pakoševo and Debrište localities are represented as small remnants of lava flows cropping out at the southern edge of Skopje basin and at the western edge of Tikveš basin, respectively. Šumovit Greben center is considered as part of the Kožuf-Voras volcanic system, and it is located on its westernmost side, at the southern edge of Mariovo basin, which is largely composed of volcaniclastic sediments. We present new eruption ages applying the unspiked Cassignol-Gillot K–Ar technique on groundmass, as well as petrological and geochemical data, supplemented with Sr and Nd isotopes to complement and better understand the Neogene-Pleistocene volcanism in the region. Eruption ages on these rocks interlayered between sedimentary formations allow to better constrain the evolution of those sedimentary basins. Rocks from the three volcanic centers belong to the high-K calc-alkaline–shoshonitic series based on their elevated K content. The oldest center amongst these three localities, as well as other Late Miocene centers within the region, is the trachyandesitic Debrište, which formed at ca. 8.0 Ma, and exhibits the highest Nd and lowest Sr isotopic ratios (0.512441–0.512535 and 0.706759–0.706753, respectively). The basaltic trachyandesite Pakoševo center formed at ca. 3.8 Ma and its Nd and Sr isotopic ratios (0.512260 and 0.709593, respectively) bear the strongest signature of crustal contamination. The rhyolitic Šumovit Greben center is a composite volcanic structure formed at ca. 3.0–2.7 Ma. Its youngest eruption unit has a slightly higher Nd and lower Sr isotopic ratios (0.512382 and 0.709208, respectively) representing a magma with a lesser extent of crustal assimilation than the other samples from this center. The overall trend through time in the Sr and Nd isotopic ratios of the Late Miocene to Pleistocene mafic volcanic centers in the region implies an increasing rate of metasomatism of the lithospheric mantle.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1223
Author(s):  
Sławomir Mederski ◽  
Jaroslav Pršek ◽  
Dimitrina Dimitrova ◽  
Bahri Hyseni

This paper describes a newly discovered Bi-Cu ± Au mineralization co-occurring with Pb-Zn-Ag hydrothermal mineralization within the Kizhnica-Hajvalia-Badovc ore field, central Kosovo, Vardar Zone. The mineralogy of two styles of Bi-Cu ± Au mineralization was described using EPMA in combination with reflected and transmitted light microscopy. Hydrothermal Cu-Bi veinlets in the Kizhnica andesite quarry consist of Bi sulfosalts (bismuthinite, cosalite, aikinite, and krupkaite), pyrite, hematite, chalcopyrite, galena, sphalerite, and tetrahedrite group minerals. Disseminated Bi-Au-Cu-Te mineralization from the contact type of mineralization (hornfels) consists of Bi sulfosalts (cannizzarite, bismuthinite, galenobismutite, cosalite), associated with sulfarsenides (arsenopyrite, gersdorffite, and cobaltite), base metal sulfides (chalcopyrite, pyrite, sphalerite, pyrrhotite, and galena), native gold, native bismuth, and tetradymite. LA-ICP-MS analyses of sphalerite, chalcopyrite, and tetrahedrite indicate increased content of In and Sn in the Kizhnica Bi-Cu-Au mineralizing system, while LA-ICP-MS analyses in pyrites show the presence of many elements, e.g., Au, As, Co, Sb, Tl, Hg, Pb, Bi related to the structure of pyrite or controlled by nano-inclusions. The results suggest a connection between Bi-Cu±Au mineralization and the proximity to intrusive rocks, which may be helpful for Au exploration in Kosovo.


2021 ◽  
pp. 97-115
Author(s):  
S. Mederski ◽  
M. Wojsław ◽  
J. Pršek ◽  
J. Majzlan ◽  
S. Kiefer ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Rudolph Scherreiks ◽  
Marcelle BouDagher-Fadel

Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar Ocean probably had a composite width of over 3000 km. From surface geology we know that this ocean was initially located between two passive margins: Pelagonian Adria in the west and Serbo-Macedonian-Eurasia in the east. Pelagonia was covered by a carbonate platform that accumulated, during Late Triassic to Early Cretaceous time, where highly diversified carbonate sedimentary environments evolved and reacted to the adjacent, converging Vardar Ocean plate. We conceive that on the east side of the Vardar Ocean, a Cretaceous carbonate platform evolved from the Aptian to the Maastrichtian time in the forearc basin of the Vardar supra-subduction volcanic arc complex. The closure of the Vardar Ocean occurred in one episode of ophiolite obduction and in two episodes of intra-oceanic subduction. 1. During the Middle Jurassic time a 1200-km slab of west Vardar lithosphere subducted beneath the supra-subduction, ‘Eohellenic’, arc, while a 200-km-wide slab obducted onto Pelagonia between the Callovian and Valanginian times. 2. During the Late Jurassic through to the Cretaceous time a 1700-km-wide slab subducted beneath the evolving east Vardar-zone arc-complex. Pelagonia, the trailing edge of the subducting east-Vardar Ocean slab, crashed and underthrust the Vardar arc complex during the Paleocene time and ultimately crashed with Serbo-Macedonia. Since the late Early Jurassic time, the Hellenides have moved about 3000 km toward the northeast while the Atlantic Ocean spread.


2020 ◽  
Vol 1 (22) ◽  
Author(s):  
Zehra Salkić ◽  
Boško Lugović ◽  
Elvir Babajić

Postorogenic volcanic rocks of different Tertiary ages are very common in the Sava-Vardar Zone of the Dinarides and in the southeastern part of adjoing Pannonian Basin. South of the Sava-Vardar Zone, in central Bosnia, Tertiary volcanic rocks occur within ophiolite sequences and genetically related sedimentary formations of the Dinaride Ophiolite Zone. Central Bosnia volcanic rocks are mostly dacites, and highly subordinately andesites as the members of the high-K calc-alkaline series.It appears from the mineralogical and petrographic characteristics obtained some insight into the processes that occurred during the genesis of the rocks. The presence of primary igneous minerals: clinopyroxene, orthopyroxene, hornblende and biotite from ferromagnesian minerals, and plagioclase, sanidine and quartz, indicates that the fractional crystallization played a significant role in the genesis of the rocks. Reaction edge on many rounded quartz phenocrysts indicates the possibility of magma mixing with the formation of Tertiary volcanic rocks of the central Bosnia. On magma mixing different temperature and chemical composition also indicates the existence of zoned plagioclase and amphibole phenocrysts.Complex compositional and zoning patterns of biotite and plagioclase phenocrysts and disequilibrium microstructures of plagioclase and quartz phenocrysts suggest interaction of fractionating, mantle derived melts with continental crust during a shalow level pre-eruptive stage and mixing with small amount of devolatilized phlogopite-phyric mafic magma before eruption.


2020 ◽  
Author(s):  
Nikola Stanković ◽  
Vesna Cvetkov ◽  
Vladica Cvetković

<p>In this study we report interim results of our ongoing research that involves the application of numerical modeling for constraining the geodynamic conditions associated with the closure of the Vardar branch of the Tethys Ocean. The study is aimed at better understanding the ultimate fate of the Balkan ophiolites, namely at addressing the question whether these ophiolites represent relicts of an ocean that completely closed during Upper Jurassic/lowermost Cretaceous time (Vardar Tethys) or they also contain remnants of the ocean floor of a Late Cretaceous oceanic realm (Sava – Vardar) [Schmid et al., 2008].</p><p>In our numerical models we try to simulate a single intraoceanic subduction that commences in the Lower/Mid Jurassic and ends in the Lower Cretaceous, transitioning into oceanic closure processes and subsequent collision between Adria and Eurasia plates. These convergent-collision events should have led to the formation of ophiolite-like igneous rocks of the so-called Sava - Vardar zone.</p><p>A series of numerical simulations were performed with varying parameters. In the scope of our numerical simulations, the set of equations is solved: the continuity equation, the Navier-Stokes equations and the temperature equation. Marker in cell method was incorporated in solving this system with finite difference discretization of the equations on a staggered grid. To utilize this numerical method a thermo-mechanical code I2VIS [Gerya et al., 2000; Gerya & Yuen, 2003] was used for obtaining the final results. </p><p>Our actual 2D thermo-mechanical models cover the crust and the upper portion of the mantle with varying starting widths of the Vardar Ocean in the Lower Jurassic. The ocean is modeled with two segments: the western subducting slab and the eastern overriding slab. Slabs with different ages and thicknesses were used and the convergence rate is varied. The intraoceanic subduction is assumed to have been initiated along the mid oceanic ridge. Two continents (i.e. Adria and Eurasia) with different thicknesses of the continental lithosphere and crust are also modeled adjacent to a single oceanic realm between them.</p><p>The parameter study is in function of defining conditions under which the hypothesized scenario occurs. So far, we have succeeded in reproducing westward obduction onto the Adriatic margin, which is in accordance with the geological observations, i.e., with the top-west emplaced West Vardar ophiolites [see Schmid et al., 2008 for references]. However, our model is yet to produce sufficient amounts of back-arc extension along the Eurasian active margin and that is crucial for explaining the formation of the igneous provinces occurring within the Late Cretaceous Sava – Vardar zone and the Timok Magmatic Complex.</p>


2020 ◽  
Author(s):  
Kata Molnár ◽  
Stéphane Dibacto ◽  
Pierre Lahitte ◽  
Marjan Temovski ◽  
Samuele Agostini ◽  
...  

<p>Late Miocene to Pleistocene volcanism within the Vardar zone (North Macedonia) covers a large area, has a wide range in composition and it is largely connected to the tectonic evolution of the South Balkan extensional system, the northern part of the Aegean extensional regime. The scattered potassic to ultrapotassic volcanism developed south from the Scutari-Peć fault zone since 6.57 Ma [1]. The focus of this study is on three volcanic centers located on deep structures or thrust faults along the western part of the Vardar zone, for which there is none to very little geochronological and geochemical data available. Pakoševo and Debrište localities are represented as small remnants of lava flows cropping out at the southern edge of Skopje basin and at the western edge of Tikveš basin, respectively. Šumovit Greben center is considered as part of the Kožuf-Kozjak/Voras massif (6.5-1.8 Ma [1]), and it is located on its westernmost side, at the southern edge of Mariovo basin, which is largely comprised of volcanoclastic sediments. Here we present new eruption ages applying the unspiked Cassignol-Gillot K-Ar technique on groundmass, petrological and geochemical data, supplemented with Sr and Nd isotopes to complement and better understand the Neogene-Quaternary volcanism in the region. Obtaining the eruption ages of these volcanic centers could also help to better constrain the evolution of the sedimentary basins. All of the three centers belong to the shoshonitic series based on their elevated K-content. The oldest center amongst these three localities, as well as other Late Miocene centers within the region, is the trachyandesitic Debrište, which formed at ca. 8.1 Ma, and exhibits the highest Nd isotopic ratios (0.512441-0.512535). The trachybasaltic Pakoševo center formed at ca. 3.8 Ma and, based on its Nd isotopic ratio (0.512260), represents the strongest sign of crustal contamination. The rhyolitic Šumovit Greben center is a composite volcanic structure formed at ca. 3.0-2.7 Ma. Its youngest eruption unit has a slightly larger Nd isotopic ratio (0.512382), representing a less evolved magma at the end of its activity.</p><p>This research was funded by the GINOP-2.3.2-15-2016-00009 ‘ICER’ project, the French-Hungarian Cooperation Program TÉT-FR-2018-00018 and the HORIZON 2020 grant N 676564.</p><p>References:</p><p>[1] Yanev et al., 2008 – Mineralogy and Petrology, 94(1-2), 45-60.</p>


Sign in / Sign up

Export Citation Format

Share Document