start domain
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Thiya Mukherjee ◽  
Bibek Subedi ◽  
Aashima Khosla ◽  
Adara L Warner ◽  
Ruben Lerma-Reyes ◽  
...  

Class IV homeodomain leucine-zipper transcription factors (HD-Zip IV TFs) are key regulators of epidermal differentiation that are characterized by a DNA-binding homeodomain (HD) in conjunction with lipid sensor domain termed START (Steroidogenic Acute Regulatory (StAR)-related lipid Transfer). Previous work demonstrated that the START domain of GLABRA2 (GL2), a HD-Zip IV member from Arabidopsis, is required for transcription factor activity. Here, we address the functions and possible interactions of START and the HD in DNA binding, dimerization, and protein turnover. Deletion analysis of the HD and missense mutations of a conserved lysine (K146) result in phenotypic defects in leaf trichomes, root hairs and seed mucilage, similar to those observed for START mutants, despite nuclear localization of the mutant proteins. Gel shift and ChIP-seq experiments demonstrate that while HD mutations impair binding to target DNA, the START domain is dispensable for DNA binding. Vice versa, yeast two-hybrid assays reveal impaired GL2 dimerization for START domain mutants, but not HD mutants. Using in vivo cycloheximide chase experiments, we provide evidence for the role of START, but not HD, in maintaining protein stability. This work advances our fundamental understanding of HD-Zip TFs as multidomain regulators of epidermal development in plants.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Beatriz Sanchez-Solana ◽  
Dunrui Wang ◽  
Xiaolan Qian ◽  
Parthibane Velayoudame ◽  
Dhirendra K. Simanshu ◽  
...  

Abstract Background DLC1, a tumor suppressor gene that is downregulated in many cancer types by genetic and nongenetic mechanisms, encodes a protein whose RhoGAP and scaffolding activities contribute to its tumor suppressor functions. The role of the DLC1 START (StAR-related lipid transfer; DLC1-START) domain, other than its binding to Caveolin-1, is poorly understood. In other START domains, a key function is that they bind lipids, but the putative lipid ligand for DLC1-START is unknown. Methods Lipid overlay assays and Phosphatidylserine (PS)-pull down assays confirmed the binding of DLC1-START to PS. Co-immunoprecipitation studies demonstrated the interaction between DLC1-START and Phospholipase C delta 1 (PLCD1) or Caveolin-1, and the contribution of PS to those interactions. Rho-GTP, cell proliferation, cell migration, and/or anchorage-independent growth assays were used to investigate the contribution of PS and PLCD1, or the implications of TCGA cancer-associated DLC1-START mutants, to DLC1 functions. Co-immunoprecipitations and PS-pull down assays were used to investigate the molecular mechanisms underlying the impaired functions of DLC1-START mutants. A structural model of DLC1-START was also built to better understand the structural implications of the cancer-associated mutations in DLC1-START. Results We identified PS as the lipid ligand for DLC1-START and determined that DLC1-START also binds PLCD1 protein in addition to Caveolin-1. PS binding contributes to the interaction of DLC1 with Caveolin-1 and with PLCD1. The importance of these activities for tumorigenesis is supported by our analysis of 7 cancer-associated DLC1-START mutants, each of which has reduced tumor suppressor function but retains wildtype RhoGAP activity. Our structural model of DLC1-START indicates the mutants perturb different elements within the structure, which is correlated with our experimental findings that the mutants are heterogenous with regard to the deficiency of their binding properties. Some have reduced PS binding, others reduced PLCD1 and Caveolin-1 binding, and others are deficient for all of these properties. Conclusion These observations highlight the importance of DLC1-START for the tumor suppressor function of DLC1 that is RhoGAP-independent. They also expand the versatility of START domains, as DLC1-START is the first found to bind PS, which promotes the binding to other proteins.


2021 ◽  
Author(s):  
Izabela Wojciechowska ◽  
Thiya Mukherjee ◽  
Patrick Knox-Brown ◽  
Xueyun Hu ◽  
Aashima Khosla ◽  
...  

Plant homeodomain leucine-zipper IV (HD-Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. The START domain is required for TF activity; however, its presumed role as a lipid sensor is not well understood. Here we used tandem affinity purification from Arabidopsis cell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative family member which controls epidermal differentiation, recruits lysophosphatidylcholines in a START-dependent manner. In vitro assays with recombinant protein verified that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding. We additionally uncovered that PDF2 controls the expression of phospholipid-related target genes by binding to a palindromic octamer with consensus to a phosphate (Pi) response element. Phospholipid homeostasis and elongation growth were altered in pdf2 mutants according to Pi availability. Cycloheximide chase experiments further revealed a role for START in maintaining protein levels, and Pi limitation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity. We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Overall our data provide insights towards understanding how the lipid metabolome integrates Pi availability with gene expression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sanjeet Kumar Mahtha ◽  
Ravi Kiran Purama ◽  
Gitanjali Yadav

The StAR-related lipid transfer (START) domain containing proteins or START proteins, encoded by a plant amplified family of evolutionary conserved genes, play important roles in lipid binding, transport, signaling, and modulation of transcriptional activity in the plant kingdom, but there is limited information on their evolution, duplication, and associated sub- or neo-functionalization. Here we perform a comprehensive investigation of this family across the rice pangenome, using 10 wild and cultivated varieties. Conservation of START domains across all 10 rice genomes suggests low dispensability and critical functional roles for this family, further supported by chromosomal mapping, duplication and domain structure patterns. Analysis of synteny highlights a preponderance of segmental and dispersed duplication among STARTs, while transcriptomic investigation of the main cultivated variety Oryza sativa var. japonica reveals sub-functionalization amongst genes family members in terms of preferential expression across various developmental stages and anatomical parts, such as flowering. Ka/Ks ratios confirmed strong negative/purifying selection on START family evolution, implying that ontogeny recapitulated selection pressures during rice domestication. Our findings provide evidence for high conservation of START genes across rice varieties in numbers, as well as in their stringent regulation of Ka/Ks ratio, and showed strong functional dependency of plants on START proteins for their growth and reproductive development. We believe that our findings advance the limited knowledge about plant START domain diversity and evolution, and pave the way for more detailed assessment of individual structural classes of START proteins among plants and their domain specific substrate preferences, to complement existing studies in animals and yeast.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1851
Author(s):  
Geetika Bassi ◽  
Simarjit Kaur Sidhu ◽  
Suresh Mishra

The fundamental framework of steroidogenesis is similar across steroidogenic cells, especially in initial mitochondrial steps. For instance, the START domain containing protein-mediated cholesterol transport to the mitochondria, and its conversion to pregnenolone by the enzyme P450scc, is conserved across steroidogenic cells. The enzyme P450scc localizes to the inner mitochondrial membrane, which makes the mitochondria essential for steroidogenesis. Despite this commonality, mitochondrial structure, number, and dynamics vary substantially between different steroidogenic cell types, indicating implications beyond pregnenolone biosynthesis. This review aims to focus on the growing roles of mitochondria, autophagy and lipophagy in cholesterol uptake, trafficking and homeostasis in steroidogenic cells and consequently in steroidogenesis. We will focus on these aspects in the context of the physiological need for different steroid hormones and cell-intrinsic inherent features in different steroidogenic cell types beyond mitochondria as a mere site for the beginning of steroidogenesis. The overall goal is to provide an authentic and comprehensive review on the expanding role of steroidogenic cell-intrinsic processes in cholesterol homeostasis and steroidogenesis, and to bring attention to the scientific community working in this field on these promising advancements. Moreover, we will discuss a novel mitochondrial player, prohibitin, and its potential role in steroidogenic mitochondria and cells, and consequently, in steroidogenesis.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009551
Author(s):  
Koushik Das ◽  
Natsuki Watanabe ◽  
Tomoyoshi Nozaki

Lipid transfer proteins (LTPs) are the key contributor of organelle-specific lipid distribution and cellular lipid homeostasis. Here, we report a novel implication of LTPs in phagocytosis, trogocytosis, pinocytosis, biosynthetic secretion, recycling of pinosomes, and motility of the parasitic protist E. histolytica, the etiological agent of human amoebiasis. We show that two StAR-related lipid transfer (START) domain-containing LTPs (named as EhLTP1 and 3) are involved in these biological pathways in an LTP-specific manner. Our findings provide novel implications of LTPs, which are relevant to the elucidation of pathophysiology of the diseases caused by parasitic protists.


2020 ◽  
Vol 21 (21) ◽  
pp. 8175
Author(s):  
Ashton S. Holub ◽  
Renee A. Bouley ◽  
Ruben C. Petreaca ◽  
Aman Y. Husbands

Rho GTPase signaling promotes proliferation, invasion, and metastasis in a broad spectrum of cancers. Rho GTPase activity is regulated by the deleted in liver cancer (DLC) family of bona fide tumor suppressors which directly inactivate Rho GTPases by stimulating GTP hydrolysis. In addition to a RhoGAP domain, DLC proteins contain a StAR-related lipid transfer (START) domain. START domains in other organisms bind hydrophobic small molecules and can regulate interacting partners or co-occurring domains through a variety of mechanisms. In the case of DLC proteins, their START domain appears to contribute to tumor suppressive activity. However, the nature of this START-directed mechanism, as well as the identities of relevant functional residues, remain virtually unknown. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) dataset and evolutionary and structure-function analyses, we identify several conserved residues likely to be required for START-directed regulation of DLC-1 and DLC-2 tumor-suppressive capabilities. This pan-cancer analysis shows that conserved residues of both START domains are highly overrepresented in cancer cells from a wide range tissues. Interestingly, in DLC-1 and DLC-2, three of these residues form multiple interactions at the tertiary structural level. Furthermore, mutation of any of these residues is predicted to disrupt interactions and thus destabilize the START domain. As such, these mutations would not have emerged from traditional hotspot scans of COSMIC. We propose that evolutionary and structure-function analyses are an underutilized strategy which could be used to unmask cancer-relevant mutations within COSMIC. Our data also suggest DLC-1 and DLC-2 as high-priority candidates for development of novel therapeutics that target their START domain.


2020 ◽  
Author(s):  
Ashton S. Holub ◽  
Renee A. Bouley ◽  
Ruben C. Petreaca ◽  
Aman Y. Husbands

AbstractRho GTPase signaling promotes proliferation, invasion, and metastasis in a broad spectrum of cancers. Rho GTPase activity is regulated by the Deleted in Liver Cancer (DLC) family of bonafide tumor suppressors which directly inactivate Rho GTPases by stimulating GTP hydrolysis. In addition to a RhoGAP domain, DLC proteins contain a StAR-related lipid transfer (START) domain. START domains in other organisms bind hydrophobic small molecules and can regulate interacting partners or co-occurring domains through a variety of mechanisms. In the case of DLC proteins, their START domain appears to contribute to tumor suppressive activity. However, the nature of this START-directed mechanism, as well as the identities of relevant functional residues, remain virtually unknown. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) dataset, and evolutionary and structure-function analyses, we identify several conserved residues likely to be required for START-directed regulation of DLC-1 and DLC-2 tumor suppressive capability. This pan-cancer analysis shows that conserved residues of both START domains are highly-overrepresented in cancer cells from a wide range tissues. Interestingly, in DLC-1 and DLC-2, three of these residues form multiple interactions at the tertiary structural level. Further, mutation of any of these residues is predicted to disrupt interactions and thus destabilize the START domain. As such, these mutations would not have emerged from traditional hotspot scans of COSMIC. We propose that evolutionary and structure-function analyses are an underutilized strategy which could be used to unmask cancer-relevant mutations within COSMIC. Our data also suggest DLC-1 and DLC-2 as high- priority candidates for development of novel therapeutics targeting their START domain.Simple SummaryDeleted in Liver Cancer (DLC) proteins are tumor suppressors that contain a StAR-related lipid transfer (START) domain. Little is known about the DLC START domain including the residues that mediate its activation. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) dataset, evolutionary, and structure-function analyses, we identify key functional residues of DLC START domains. Mutations in these residues are significantly overrepresented in numerous cancers in multiple tissue types. In other contexts, START domains bind hydrophobic small molecules and stimulate regulatory outputs of interacting partners or co-occurring domains. The identification of functional residues in the DLC START domain may thus have implications for targeted manipulation of DLC tumor suppressive activity. Critically, these residues would not have been identified using traditional queries of COSMIC. Thus, we propose tandem evolutionary and structure-function approaches are an underutilized strategy to unmask cancer-relevant mutations within COSMIC.


Sign in / Sign up

Export Citation Format

Share Document