epigenetic methylation
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 21)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 28 ◽  
Author(s):  
Li Wen ◽  
Hong-liu Yang ◽  
Lin Lin ◽  
Liang Ma ◽  
Ping Fu

: Kidney disease has complex and multifactorial pathophysiology and pathogenesis. Recent studies have revealed that epigenetic methylation changes, namely DNA methylation, histone methylation and non-histone methylation, are strongly implicated in various forms of kidney diseases. This review provides a perspective on the emerging role of epigenetic methylation in kidney disease, including the effects of DNA methylation in diverse promoter regions, regulation and implication of histone methylation, and recent advances and potential directions related to non-histone methylation. Monitoring or targeting epigenetic methylation has potential to contribute to development of therapeutic approaches for multiple kidney diseases.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Emily W. Harville ◽  
Pashupati P. Mishra ◽  
Mika Kähönen ◽  
Emma Raitoharju ◽  
Saara Marttila ◽  
...  

Abstract Background Women with a history of complications of pregnancy, including hypertensive disorders, gestational diabetes or an infant fetal growth restriction or preterm birth, are at higher risk for cardiovascular disease later in life. We aimed to examine differences in maternal DNA methylation following pregnancy complications. Methods Data on women participating in the Young Finns study (n = 836) were linked to the national birth registry. DNA methylation in whole blood was assessed using the Infinium Methylation EPIC BeadChip. Epigenome-wide analysis was conducted on differential CpG methylation at 850 K sites. Reproductive history was also modeled as a predictor of four epigenetic age indices. Results Fourteen significant differentially methylated sites were found associated with both history of pre-eclampsia and overall hypertensive disorders of pregnancy. No associations were found between reproductive history and any epigenetic age acceleration measure. Conclusions Differences in epigenetic methylation profiles could represent pre-existing risk factors, or changes that occurred as a result of experiencing these complications.


2021 ◽  
Vol 11 (9) ◽  
pp. 1240
Author(s):  
Grace Blest-Hopley ◽  
Marco Colizzi ◽  
Diana Prata ◽  
Vincent Giampietro ◽  
Michael Brammer ◽  
...  

High doses of delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, have been shown to have anxiogenic effects. Additionally, THC effects have been shown to be modulated by genotype, including the single nucleotide polymorphism (SNP) rs1130233 at the protein kinase AKT1 gene, a key component of the dopamine signalling cascade. As such, it is likely that epigenetic methylation around this SNP may affect AKT gene expression, which may in turn impact on the acute effects of THC on brain function. We investigated the genetic (AKT1 rs1130233) and epigenetic modulation of brain function during fear processing in a 2-session, double-blind, cross-over, randomized placebo-controlled THC administration, in 36 healthy males. Fear processing was assessed using an emotion (fear processing) paradigm, under functional magnetic resonance imaging (fMRI). Complete genetic and fMRI data were available for 34 participants. THC caused an increase in anxiety and transient psychotomimetic symptoms and para-hippocampal gyrus/ amygdala activation. Number of A alleles at the AKT1 rs1130233 SNP, and percentage methylation at the CpG11–12 site, were independently associated with a greater effect of THC on activation in a network of brain regions including left and right parahippocampal gyri, respectively. AKT1 rs1130233 moderation of the THC effect on left parahippocampal activation persisted after covarying for methylation percentage, and was partially mediated in sections of the left parahippocampal gyrus/ hippocampus by methylation percentage. These results may offer an example of how genetic and epigenetic variations influence the psychotomimetic and neurofunctional effects of THC.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1884
Author(s):  
Galina Smolikova ◽  
Ksenia Strygina ◽  
Ekaterina Krylova ◽  
Tatiana Leonova ◽  
Andrej Frolov ◽  
...  

Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network—the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes—POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3846
Author(s):  
Lore Hoes ◽  
Rüveyda Dok ◽  
Kevin J. Verstrepen ◽  
Sandra Nuyts

Alcohol consumption is an underestimated risk factor for the development of precancerous lesions in the oral cavity. Although alcohol is a well-accepted recreational drug, 26.4% of all lip and oral cavity cancers worldwide are related to heavy drinking. Molecular mechanisms underlying this carcinogenic effect of ethanol are still under investigation. An important damaging effect comes from the first metabolite of ethanol, being acetaldehyde. Concentrations of acetaldehyde detected in the oral cavity are relatively high due to the metabolization of ethanol by oral microbes. Acetaldehyde can directly damage the DNA by the formation of mutagenic DNA adducts and interstrand crosslinks. Additionally, ethanol is known to affect epigenetic methylation and acetylation patterns, which are important regulators of gene expression. Ethanol-induced hypomethylation can activate the expression of oncogenes which subsequently can result in malignant transformation. The recent identification of ethanol-related mutational signatures emphasizes the role of acetaldehyde in alcohol-associated carcinogenesis. However, not all signatures associated with alcohol intake also relate to acetaldehyde. This finding highlights that there might be other effects of ethanol yet to be discovered.


2021 ◽  
Author(s):  
Grace Blest-Hopley ◽  
Marco Colizzi ◽  
Diana Prata ◽  
Vincent Giampietro ◽  
Michael Brammer ◽  
...  

High doses of delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, have been shown to have anxiogenic effects. Also, THC effects have been shown to be modulated by genotype, including the single nucleotide polymorphism (SNP) rs1130233 at the protein kinase AKT1 gene, a key component of the dopamine signaling cascade. As such, it is likely that epigenetic methylation around this SNP may affect AKT gene expression, which may in turn impact on the acute effects of THC on brain function. We investigated the genetic (AKT1 rs1130233) and epigenetic modulation of brain function during fear processing in a 2-session, double-blind, cross-over, randomized placebo-controlled THC administration, in 36 healthy males. Fear processing was assessed using an emotion (fear processing) paradigm, under functional magnetic resonance imaging (fMRI). Complete genetic and fMRI data was available for 34 participants. THC caused an increase in anxiety and transient psychotomimetic symptoms and para-hippocampal gyrus/ amygdala activation. Number of A alleles at the AKT1 rs1130233 SNP, and percentage methylation at the CpG11-12 site, were independently associated with a greater effect of THC on activation in a network of brain regions including left and right parahippocampal gyri, respectively. AKT1 rs1130233 moderation of the THC effect on left parahippocampal activation persisted after covarying for methylation percentage, and was partially mediated in sections of the left parahippocampal gyrus/ hippocampus by methylation percentage. These results may offer an example of how genetic and epigenetic variations influence the psychotomimetic and neurofunctional effects of THC.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3264
Author(s):  
Laura Mosca ◽  
Francesca Vitiello ◽  
Luigi Borzacchiello ◽  
Alessandra Coppola ◽  
Roberta Veglia Tranchese ◽  
...  

Epigenetics includes modifications in DNA methylation, histone and chromatin structure, and expression of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Knowledge of the relationships between S-adenosylmethionine (AdoMet or SAM), the universal methyl donor for all epigenetic methylation reactions and miRNAs or lncRNAs in human cancer may provide helpful insights for the development of new end more effective anticancer therapeutic approaches. In recent literature, a complex network of mutual interconnections between AdoMet and miRNAs or lncRNAs has been reported and discussed. Indeed, ncRNAs expression may be regulated by epigenetic mechanisms such as DNA and RNA methylation and histone modifications. On the other hand, miRNAs or lncRNAs may influence the epigenetic apparatus by modulating the expression of its enzymatic components at the post-transcriptional level. Understanding epigenetic mechanisms, such as dysregulation of miRNAs/lncRNAs and DNA methylation, has become of central importance in modern research. This review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.


Author(s):  
Simona Iodice ◽  
Alessandro Ceresa ◽  
Cecilia Esposito ◽  
Francesco Mucci ◽  
Diana Conti ◽  
...  

Background: Both obesity and depression are medical conditions associated with severe disability and biological abnormalities. Our aim was to study associations between Body Mass Index (BMI), depression and biological changes in women affected by overweight or obesity. Methods: Depressive symptoms were evaluated by the Beck Depression Inventory II (BDI-II) questionnaire in 200 women affected by overweight/obesity (mean age of the sample 52.7 ± 12.9 years, BMI 33.8 ± 5.5 kg/m2). A blood sample was obtained for evaluation of biochemical (oxytocin and vitamin D), inflammatory and epigenetic (methylation of clock genes) parameters. Multivariable linear regression models were used to study the association between BMI or severity of depressive symptoms (BDI-II scores) with different biomarkers. Results: BMI was found to be associated with severity of depressive symptoms (p = 0.050). Severity of obesity resulted to be associated with lower plasma levels of oxytocin (p = 0.053), vitamin D deficiency (p = 0.006) and higher plasma levels of IFN-γ (p = 0.004), IL-6 (p = 0.013), IL-7 (p = 0.013), TNF-alpha (p = 0.036) and chemokine ligand 3 (CCL3) (p = 0.013, R2 = 0.03). Severity of depression was significantly associated with more methylation of clock genes CRY1 (p = 0.034, R2 = 0.16) and CRY2 (p = 0.019, R2 = 0.47). More severe depression together with higher levels of IL-8 strongly predicted lower methylation of CLOCK gene (p = 0.009); Conclusions: Different biological abnormalities have been found to be independently associated with BMI and severity of depressive symptoms in women affected by overweight/obesity. The complex interplay between overweight, depression and biological changes will have to be better clarified by future studies.


Sign in / Sign up

Export Citation Format

Share Document