scholarly journals On Interacting Higher Spin Bosonic Gauge Fields in BRST-antifield Formalism

Author(s):  
Makoto Sakaguchi ◽  
Haruya Suzuki

Abstract We examine interacting bosonic higher spin gauge fields in the BRST-antifield formalism. Assuming that an interacting action S is a deformation of the free action with a deformation parameter g, we solve the master equation (S, S) = 0 from the lower orders in g. It is shown that choosing a certain cubic interaction as the first order deformation, we can solve the master equation and obtain an action containing all orders in g. The antighost number of the obtained action is less than or equal to two. Furthermore we show that the obtained action is lifted to that of interacting bosonic higher spin gauge fields on anti-de Sitter spaces.

2009 ◽  
Vol 06 (02) ◽  
pp. 285-342 ◽  
Author(s):  
XAVIER BEKAERT

The unconstrained frame-like formulation of an infinite tower of completely symmetric tensor gauge fields is reviewed and examined in the limit where the cosmological constant goes to zero. By partially fixing the gauge and solving the torsion constraints, the form of the gauge transformations in the unconstrained metric-like formulation are obtained till first order in a weak field expansion. The algebra of the corresponding gauge symmetries is shown to be equivalent, at this order and modulo (unphysical) gauge parameter redefinitions, to the Lie algebra of Hermitian differential operators on ℝn, the restriction of which to the spin-two sector is the Lie algebra of infinitesimal diffeomorphisms.


2003 ◽  
Vol 18 (27) ◽  
pp. 5021-5038 ◽  
Author(s):  
ARKADY Y. SEGAL

The model of a point particle in the background of external symmetric tensor fields is analyzed from the higher spin theory perspective. It is proposed that the gauge transformations of the infinite collection of symmetric tensor fields may be read off from the covariance properties of the point particle action w.r.t. general canonical transformations. The gauge group turns out to be a semidirect product of all phase space canonical transformations to an Abelian ideal of "hyperWeyl" transformations and includes U(1) and general coordinate symmetries as a subgroup. A general configuration of external fields includes rank-0,1,2 symmetric tensors, so the whole system may be truncated to ordinary particle in Einstein–Maxwell backgrounds by switching off the higher-rank symmetric tensors. When otherwise all the higher rank tensors are switched on, the full gauge group provides a huge gauge symmetry acting on the whole infinite collection of symmetric tensors. We analyze this gauge symmetry and show that the symmetric tensors which couple to the point particle should not be interpreted as Fronsdal gauge fields, but rather as gauge fields of some conformal higher spin theories. It is shown that the Fronsdal fields system possesses twice as many symmetric tensor fields as is contained in the general background of the point particle. Besides, the particle action in general backgrounds is shown to reproduce De Wit–Freedman point particle–symmetric tensors first order interaction suggested many years ago, and extends their result to all orders in interaction, while the generalized equivalence principle completes the first order covariance transformations found in their paper, in all orders.


2019 ◽  
Vol 2019 (10) ◽  
Author(s):  
Dionysios Anninos ◽  
Frederik Denef ◽  
Ruben Monten ◽  
Zimo Sun
Keyword(s):  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Adrian David ◽  
Yasha Neiman

Abstract We consider higher-spin gravity in (Euclidean) AdS4, dual to a free vector model on the 3d boundary. In the bulk theory, we study the linearized version of the Didenko-Vasiliev black hole solution: a particle that couples to the gauge fields of all spins through a BPS-like pattern of charges. We study the interaction between two such particles at leading order. The sum over spins cancels the UV divergences that occur when the two particles are brought close together, for (almost) any value of the relative velocity. This is a higher-spin enhancement of supergravity’s famous feature, the cancellation of the electric and gravitational forces between two BPS particles at rest. In the holographic context, we point out that these “Didenko-Vasiliev particles” are just the bulk duals of bilocal operators in the boundary theory. For this identification, we use the Penrose transform between bulk fields and twistor functions, together with its holographic dual that relates twistor functions to boundary sources. In the resulting picture, the interaction between two Didenko-Vasiliev particles is just a geodesic Witten diagram that calculates the correlator of two boundary bilocals. We speculate on implications for a possible reformulation of the bulk theory, and for its non-locality issues.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Samim Akhtar ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Debopam Goswami ◽  
Sudhakar Panda ◽  
...  

Abstract In this work, our prime objective is to study non-locality and long range effect of two body correlation using quantum entanglement from various information theoretic measure in the static patch of de Sitter space using a two body Open Quantum System (OQS). The OQS is described by a system of two entangled atoms, surrounded by a thermal bath, which is modelled by a massless probe scalar field. Firstly, we partially trace over the bath field and construct the Gorini Kossakowski Sudarshan Lindblad (GSKL) master equation, which describes the time evolution of the reduced subsystem density matrix. This GSKL master equation is characterized by two components, these are-Spin chain interaction Hamiltonian and the Lindbladian. To fix the form of both of them, we compute the Wightman functions for probe massless scalar field. Using this result alongwith the large time equilibrium behaviour we obtain the analytical solution for reduced density matrix. Further using this solution we evaluate various entanglement measures, namely Von-Neumann entropy, R$$e'$$e′nyi entropy, logarithmic negativity, entanglement of formation, concurrence and quantum discord for the two atomic subsystem on the static patch of De-Sitter space. Finally, we have studied violation of Bell-CHSH inequality, which is the key ingredient to study non-locality in primordial cosmology.


1980 ◽  
Vol 96 (1-2) ◽  
pp. 105-109 ◽  
Author(s):  
A. Chakrabarti ◽  
A. Comtet ◽  
K.S. Viswanathan

Author(s):  
Alfredo Herrera-Aguilar ◽  
Alma D. Rojas ◽  
Elí Santos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document