scholarly journals Higher spin de Sitter Hilbert space

2019 ◽  
Vol 2019 (10) ◽  
Author(s):  
Dionysios Anninos ◽  
Frederik Denef ◽  
Ruben Monten ◽  
Zimo Sun
Keyword(s):  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


2018 ◽  
Vol 168 ◽  
pp. 01007 ◽  
Author(s):  
Yasha Neiman

This contribution is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring together two main elements. The first is the observation by Anninos, Hartman and Strominger that Vasiliev’s higher-spin gravity provides a working model for dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde that dS/CFT may prove more tractable if one works in so-called “elliptic” de Sitter space – a folded-in-half version of global de Sitter where antipodal points have been identified. We review some relevant progress concerning quantum field theory on elliptic de Sitter space, higher-spin gravity and its holographic duality with a free vector model. We present our reasons for optimism that the approach outlined here will lead to a full holographic description of quantum (higher-spin) gravity in the causal patch of a de Sitter observer.


2018 ◽  
Vol 2018 (9) ◽  
Author(s):  
Evgeny I. Buchbinder ◽  
Jessica Hutomo ◽  
Sergei M. Kuzenko

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2052
Author(s):  
Ioseph L. Buchbinder ◽  
Timofey V. Snegirev

We derived the component Lagrangian for the free N-extended on-shell massless higher spin supermultiplets in four-dimensional anti-de Sitter space. The construction was based on the frame-like description of massless integer and half-integer higher spin fields. The massless supermultiplets were formulated for N≤4k, where k is a maximal integer or half-integer spin in the multiplet. The supertransformations that leave the Lagrangian invariant were found in explicit form and it was shown that their algebra is closed on-shell.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650073
Author(s):  
Davood Momeni ◽  
Muhammad Raza ◽  
Ratbay Myrzakulov

A metric is proposed to explore the noncommutative form of the anti-de Sitter (AdS) space due to quantum effects. It has been proved that the noncommutativity in AdS space induces a single component gravitoelectric field. The holographic Ryu–Takayanagi (RT) algorithm is then applied to compute the entanglement entropy (EE) in dual CFT2. This calculation can be exploited to compute ultraviolet–infrared (UV–IR) cutoff dependent central charge of the certain noncommutative CFT2. This noncommutative computation of the EE can be interpreted in the form of the surface/state correspondence. We have shown that noncommutativity increases the dimension of the effective Hilbert space of the dual conformal field theory (CFT).


2002 ◽  
Vol 17 (32) ◽  
pp. 2095-2103 ◽  
Author(s):  
CARLOS CASTRO

It is shown that an action inspired from a BF and Chern–Simons model, based on the AdS4 isometry group SO(3,2), with the inclusion of a Higgs potential term, furnishes the MacDowell–Mansouri–Chamseddine–West action for gravity, with a Gauss–Bonnet and cosmological constant term. The AdS4 space is a natural vacuum of the theory. Using Vasiliev's procedure to construct higher spin massless fields in AdS spaces and a suitable star product, we discuss the preliminary steps to construct the corresponding higher-spin action in AdS4 space representing the higher spin extension of this model. Brief remarks on noncommutative gravity are made.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
N.G. Misuna

Abstract We construct an unfolded system for off-shell fields of arbitrary integer spin in 4d anti-de Sitter space. To this end we couple an on-shell system, encoding Fronsdal equations, to external Fronsdal currents for which we find an unfolded formulation. We present a reduction of the Fronsdal current system which brings it to the unfolded Fierz-Pauli system describing massive fields of arbitrary integer spin. Reformulating off-shell higher-spin system as the set of Schwinger–Dyson equations we compute propagators of higher-spin fields in the de Donder gauge directly from the unfolded equations. We discover operators that significantly simplify this computation, allowing a straightforward extraction of wave equations from an unfolded system.


Sign in / Sign up

Export Citation Format

Share Document